a2 United States Patent

US009208438B2

(10) Patent No.: US 9,208,438 B2

Goyal et al. (45) Date of Patent: Dec. 8, 2015
(54) DUPLICATION IN DECISION TREES (56) References Cited
(71) Applicant: Cavium, Inc., San Jose, CA (US) U.S. PATENT DOCUMENTS
. : . 5,107,361 A 4/1992 Kneidinger et al.
(72) Inventors: ﬁaj an (li(gla]li Slel‘,ratiga’ﬁA (chk - 5463777 A 10/1995 Bialkowski et al.
enneth A. Bullis, Los Altos, CA (US); 6,233,575 BL* 52001 Agrawal etal. ... 11
Satyanarayana Lakshmipathi Billa, 6,298,340 Bl 10/2001 Calvignac et al.
Sunnyvale, CA (US) 6,467,019 B1 10/2002 Washburn
6,473,763 B1 10/2002 Corl et al.
(73) Assignee: Cavium, Inc., San Jose, CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
U.S.C. 154(b) by 4 days. WO WO 2009/145712 Al 12/2009
WO WO 2013/020002 Al 2/2013
(21) Appl. No.: 13/831,487 WO WO 2013/020003 Al 2/2013
.No.: ,
OTHER PUBLICATIONS
(22) Filed: Mar. 14,2013
http://en.wikipedia.org/Access__control_list, downloaded Feb. 4,
(65) Prior Publication Data 2011.
US 2013/0232104 A1 Sep. 5,2013 (Continued)
Primary Examiner — Jeftrey A Gaffin
Related U.S. Application Data Assistant Examiner — Kalpana Bharadwaj
74) Attorney, Agent, or Firm — Hamilton, Brook, Smith &
(63) Continuation-in-part of application No. 13/664,015, g{e;nolds, p%. g
filed on Oct. 30, 2012, now Pat. No. 8,934,488, which
is a continuation of application No. 13/565,784, filed 1)) ABSTRACT
on Aug 2, 2012, now Pat. No. 8937,952. A packet classification system, apparatus, and corresponding
(Continued) apparatus are provided for enabling packet classification. A
processor of a security appliance coupled to a network uses a
classifier table having a plurality of rules, the plurality of rules
(51) Imt.ClL gap Y p ty
GO6N 5/00 (2006.01) having at least one field, to build a decision tree structure for
GO6F 1/00 (2006.01) packet classification. Duplication in the decision tree may be
GO6N 5/02 (2006.01) identified, producing a wider, shallower decision tree that
(52) US.Cl ’ may result in shorter search times with reduced memory
i requirements for storing the decision tree. A number of opera-
C.PC s GO6N 5/02 (2013.01) tions needed to identify duplication in the decision tree may
(58) Field of Classification Search be reduced, thereby increasing speed and efficiency of a com-

CPC GO6N 5/02; GO6N 5/025; GO6N 5/022;
G06Q 10/10

See application file for complete search history.

piler building the decision tree.

63 Claims, 36 Drawing Sheets

100
105 10 115
RULE | FIELD-1(X-RANGE) | FIELD-2 (Y-RANGE)
R1 0-31 0-255
R2 0-255 128- 131
R3 64-71 128 - 255
Ré 67-67 0-127
RS 64-71 0-15
R6 128- 191 4-131
R7 192-192 0-255

US 9,208,438 B2
Page 2

Related U.S. Application Data

(60) Provisional application No. 61/514,344, filed on Aug.
2, 2011, provisional application No. 61/514,382, filed
on Aug. 2, 2011, provisional application No. 61/514,
379, filed on Aug. 2, 2011, provisional application No.
61/514,400, filed on Aug. 2, 2011, provisional appli-
cation No. 61/514,406, filed on Aug. 2, 2011, provi-
sional application No. 61/514,407, filed on Aug. 2,
2011, provisional application No. 61/514,438, filed on
Aug. 2, 2011, provisional application No. 61/514,447,
filed on Aug. 2, 2011, provisional application No.
61/514,450, filed on Aug. 2, 2011, provisional appli-
cation No. 61/514,459, filed on Aug. 2, 2011, provi-
sional application No. 61/514,463, filed on Aug. 2,

2011.
(56) References Cited
U.S. PATENT DOCUMENTS

6,476,763 B2 11/2002 Allen
6,587,466 Bl 7/2003 Bhattacharya et al.
6,735,600 Bl 5/2004 Andreev
6,868,414 B2 3/2005 Khanna et al.
6,980,555 B2 12/2005 Mar
7,039,641 B2 5/2006 Woo
7,366,728 B2 4/2008 Cork, Jr. et al.
7,415,472 B2 8/2008 Testa
7,441,022 Bl 10/2008 Schuba et al.
7,509,300 B2 3/2009 Sahni et al.
7,536,476 Bl 5/2009 Alleyne
7,546,234 Bl 6/2009 Deb et al.
7,571,156 Bl 8/2009 Gupta et al.
7,937,355 B2 5/2011 Corl et al.
8,005,869 B2 8/2011 Corl et al.
8,156,507 B2 4/2012 Brjazovski et al.
8,447,120 B2 5/2013 Jietal.
8,477,611 B2 7/2013 Lim
8,856,203 Bl 10/2014 Schelp et al.
8,934,488 B2 1/2015 Goyal et al.
8,937,952 B2 1/2015 Goyal et al.
8,937,954 B2 1/2015 Goyal et al.
9,137,340 B2 9/2015 Goyal et al.

2002/0023089 Al
2002/0143747 Al
2005/0013293 Al
2005/0240604 Al
2006/0026138 Al
2006/0136570 Al
2006/0155915 Al
2007/0168377 Al
2008/0031258 Al
2008/0109392 Al
2008/0140631 Al
2009/0125470 Al 5/2009 Shah et al.

2009/0185568 Al 7/2009 Cho etal.

2009/0274384 Al* 11/2009 Jakobovits 382/254
2010/0034202 Al 2/2010 Luetal.

2010/0067535 Al 3/2010 Maetal.

2010/0110936 Al 5/2010 Bailey et al.

2010/0175124 Al 7/2010 Miranda

2011/0038375 Al 2/2011 Liu et al.

2/2002 Woo

10/2002 Tal et al.
1/2005 Sahita

10/2005 Corl et al.
2/2006 Robertson et al.
6/2006 Pandya
7/2006 Pereira
7/2007 Zabarsky
2/2008 Acharya et al.
5/2008 Nandy
6/2008 Pandya

2011/0137930 Al
2011/0219010 Al
2013/0036102 Al
2013/0039366 Al
2013/0060727 Al
2013/0070753 Al
2013/0085978 Al
2013/0218853 Al
2013/0282766 Al
2014/0279850 Al
2014/0280357 Al

6/2011 Hao et al.
9/2011 Lim
2/2013 Goyal et al.
2/2013 Goyal et al.
3/2013 Goyal et al.
3/2013 Sahni et al.
4/2013 Goyal et al.
82013 Bullis et al.
10/2013 Goyal et al.
9/2014 Goyal et al.
9/2014 Goyal et al.
2014/0281809 Al 9/2014 Goyal et al.
2015/0117461 Al 4/2015 Goyal et al.

OTHER PUBLICATIONS

Baboescu, F., et al, “Packet Classification for Core Routers: Is there
an alternative to CAMSs?”, Proceedings f the 22" IEEE Conference
on Computer Communications (INFOCOM ’03), vol. 1, pp. 53-63
(2003).

Baboescu, F. and Varghese, G., “Scalable Packet Classification,”
Proceedings of the ACMSIGCOMM *01 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communi-
cation (SIGCOMM °01), pp. 199-210 (2001).

Gupta, P. and McKeown, N. “Packet Classification on Multiple
Fields,” Proceedings of SIGCOMM 99 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communi-
cation (SIGCOMM °99), pp. 147-160 (1999).

Gupta, P. and McKeown, N. “Classifying Packets With Hierarchical
Intelligent Cuttings,” IEEE Micro, 20(1):34-41 (2000).

Qi, Y, et al., “Packet Classification Algorithms: From Theory to
Practice,” Proceedings of the 28" IEEE Conference on Computer
Communications (INFOCOM ’09), pp. 648-656 (2009).

Singh, S., et al., “Packet Classification Using Multidimensional Cut-
ting,” Proceedings of the ACMSIGCOMM °03 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM 03), pp. 213-224 (2003).
International Search Report in PCT/US2012/049408 dated Dec. 21,
2012, 6 pages, entitled “Packet Classification by an Optimised Deci-
sion Tree”.

Fong et al., HaRP: Rapid Packet Classification via Hashing Round-
Down Prefixes, IEEFE Transactions onParallel and Distributed Sys-
tems, IEEE Service Center,v. 22(7), pp. 1105-1119 (2011).

Gupta, P., “Algorithms for Packet Routing Lookups and Packet Clas-
sification,” Dissertation submitted to the Dept. of Comp. Science of
Stanford Univ. (Dec. 2000).

Zhang, B., et al., “On Constructing Efficient Shared Decision Trees
for Multiple Packet Filters,” Dept. Computer Science Rice University
(2010).

Abdelghani, M., et al. “Packet Classification Using Adaptive Rule
Cutting,” IEEE Proc. of Adv. Indus. Conf. on Telecom. (2005).

Yu, L., et al., “A Novel IP Packet Classification Algorithm Based on
Hierarchical Intelligent Cuttings,” IEEE 6th Int. Conf. on ITS
Telecom. Proceedings 1033-1036 (2006).

Theiling, Henrik “Generating Decision Trees for Decoding Binaries”
ACM 2001 [Online] Downloaded Jul. 14, 2015 http://delivery.acm.
org/1 0.1145/390000/384213/p112-theiling.pdf?ip=151.207.250.51
&id=384213&acc=Active%20SERVICE&key=C15944E53DO
ACAG63%2E4D4702BOC3E38B35%2 E4 D4 702BOC3
E38B35%2E4 D4 702BOC3 E38B35&C F1 D=528083660&C
FTOKEN=15678279& acm =1436903293 abc.

* cited by examiner

U.S. Patent

Dec.8,2015 Sheet 1 of 36 US 9,208,438 B2
105 10 115 0

RULE | FIELD-1(X-RANGE) | FIELD-2 (Y-RANGE)

R1 0-31 0-255

R2 0-255 128- 131

R3 64-71 128 - 255

R4 67- 67 0-127

RS 64-71 0-15

R6 128 - 191 4-131

R7 192 - 192 0-255

FIG. 1

U.S. Patent Dec. 8, 2015 Sheet 2 of 36 US 9,208,438 B2

255

2107

R1

255

FIG. 2

U.S. Patent Dec. 8, 2015 Sheet 3 of 36 US 9,208,438 B2

300
’(//

301

(256 * 256, X, 4)

R1

(64 * 256, Y, 2)

R2
\ \
305 330
R4 R2
R5 R3
\ \
315 320

FIG. 3A

U.S. Patent Dec. 8, 2015 Sheet 4 of 36 US 9,208,438 B2

350
352 '

~-356

354a

354¢ 354b

354e

FIG. 3B

US 9,208,438 B2

Sheet 5 of 36

Dec. 8, 2015

U.S. Patent

o€ Ol

SNV

00O

000

oJe)
v9¢ 89€~

P

0.€

U.S. Patent

Dec. 8, 2015 Sheet 6 of 36

US 9,208,438 B2

/400
405/‘(START)
A

ANALYZE RULES W/IN CLASSIFIER

TABLE

|\410

Y

FOR EACH FIELD OF THE RULES,
DETERMINE A MAXIMUM
NUMBER OF CUTS TO BE MADE
ON EACH FIELD

™~ 415

\

DETERMINE THE FIELD TO BE
CUT AT ANODE OF THE
DECISION TREE

420

Y

425 END

FIG. 4

U.S. Patent Dec. 8, 2015 Sheet 7 of 36 US 9,208,438 B2

/500
505-/‘< START)
A

FOR EACH FIELD'S CUT, DETERMINE
THE AVERAGE NUMBER OF RULES | 510

IN CHILD NODES PRODUCED BY
THE FIELD'S CUT

\

COMPUTE THE DIFFERENCE
BETWEEN EACH CHILD'S NUMBER 515
OF RULES AND THE DETERMINED

AVERAGE

\

CALCULATE THE AVERAGE OF THE
DIFFERENCES COMPUTED 520

Y

CUT ANODE OF THE FIELD WITH I\
525

THE SMALLEST AVERAGE
DIFFERENCES

Y

530 END

FIG. 5

U.S. Patent Dec. 8, 2015 Sheet 8 of 36 US 9,208,438 B2

—
<> © O
o
A/_©
—
<-—> <t
o
()
1
Ll
~ L
<+ ©
Yo}
nH|] <~
g:: <
<C

FIG. 6

)\
Y
2

601

AVG =5
\

)\
Y
8

FIELD 1

)\
Y
4

1
Y
6

U.S. Patent

Dec. 8, 2015 Sheet 9 of 36

US 9,208,438 B2

/700
705./‘< START >
A

DETERMINE FIELD & NUMBER OF

| CHILD NODES CREATED BY
710 CUTTING A PARENT NODE
A 4
DETERMINE FIELD TO CUT &
715—~ NUMBER OF CHILD NODES

CREATED FOR EACH CHILD NODE

Y

720"

DETERMINE NUMBER OF CHILD

NODES CREATED BY MERGING

CHILD NODES W/ CHILD NODES
CHILDREN

725

CHILD
NODE > MAXIMUM
THRESHOLD

735

FIG. 7

e E————————

MERGE

730

U.S. Patent Dec. 8, 2015 Sheet 10 of 36 US 9,208,438 B2

/801 801\ ;815 ;820 $825 ;830

845 | 855 || 865

FIELD 2 FIELD 2
810 810
815 | 820 | 825 | 830 | 835 850 i 860 fi 870
T 840——Tr
FIELD 1 805 FIELD 1 805
4 CHILDREN CHILD 0 CUTS ON FIELD 1,
CHILDREN 1-3 CUT ON FIELD 2
FIG. 8A FIG. 8B
0
FIELD 2
810
FIELD 1 805
16 CHILDREN

FIG. 8C

U.S. Patent Dec. 8, 2015 Sheet 11 of 36 US 9,208,438 B2

901
/

FIELD 1
905

AN
/ \

J \

920 FIELD2 910 915

FIG. 9A

U.S. Patent

TREE

Dec. 8, 2015

950

952

~ 960

Y

Sheet 12 of 36

956
e

US 9,208,438 B2

— 958

R1

R7

R5

RULE TABLE

(

R1,R5, R7

~ 954

BUCKET

FIG. 9B

US 9,208,438 B2

Sheet 13 of 36

Dec. 8, 2015

U.S. Patent

de Ol

om@,/Hmm..

G867

PEBG

9¢86
)

qE86
\

ec86

1-/86

086 V.6

U.S. Patent

Dec. 8, 2015 Sheet 14 of 36 US 9,208,438 B2

/1080
1082/‘< START)
Y

COMPARE RULES IN CHILD NODES
THAT HAVE THE SAME PARENT 1084

\

IDENTIFY DUPLICATE NODES I\- 1086

Y

SELECT A DUPLICATE NODE AND
MARK IT AS AUNIQUE NODE 1088

\

SAME SUBTREE AS THE UNIQUE

LINK DUPLICATE NODES TO THE
1090
NODE

\

USE UNIQUE NODE FOR
SUBSEQUENT TREE BUILDING, DO |~ 1092
NOT USE DUPLICATE NODES FOR

SUBSEQUENT TREE BUILDING

Y

1094 END

FIG. 10A

U.S. Patent Dec. 8, 2015 Sheet 15 of 36 US 9,208,438 B2

/1020
1022—{ BEGIN)

Y

GROUP COMPETING RULES I—_ 1024

Y

ASSIGN UNIQUE PRIORITIES
WITHIN THE GROUPS THAT HAVE ™~ 1026
COMPETING RULES

\

ASSIGN PRIORITIES TO RULES
|\ 1028

THAT DO NOT COMPETE

\

STORE PRIORITY AND |\ 1030

CORRESPONDING RULE

Y

1032 END

FIG. 10B

U.S. Patent Dec. 8, 2015 Sheet 16 of 36

r

1004 NODE 1/006

US 9,208,438 B2

1000

—1005

1002 —

\\

1

L1008

1012
1014 1016

1
2
8

1
2
8

o N B~ W

1010a1 1010b 1010¢1 1

—_—

2
5

—_—

4

1004 NODE 1006

FIG. 10C

1018

o N —

010d4

-
a1 N

— 1005

1002 —

SN

1008

AN

1013/)>/<§1011

1
2
8

o N B~ W

1010a 1010b-

—_—

2
5

FIG. 10D

U.S. Patent Dec. 8, 2015 Sheet 17 of 36 US 9,208,438 B2

1040
/

1042

1044

DUPLICATE
BUCKETS OF
RULES?

NO

1046—" REMOVE DUPLICATE BUCKETS ‘

\ /

UPDATE LEAF NODES TO POINT
1048 TO UNIQUE BUCKETS

<
-

Y

1049 END

FIG. 10E

U.S. Patent Dec. 8, 2015 Sheet 18 of 36 US 9,208,438 B2

1072

1078b

1075

1074

R1
R2

\
1073

—————————————————————

FIG. 10F

U.S. Patent Dec. 8, 2015 Sheet 19 of 36 US 9,208,438 B2

1052
/1050
1054 1056
10542 < 105623 =
R 10583 R1 1058¢
———Cy ———Cy
R2 R2
J J
r3 |) | 10580 Y | 1058d
— C1 R7 = C2
R4
J J
10543 10569
Co [~1059a Co [~1059¢
Ct1 1059 Co ~1059d

FIG. 10G

U.S. Patent

Dec. 8, 2015 Sheet 20 of 36

US 9,208,438 B2

/1150
1152 —{ BEGIN)

A J

IDENTIFY PARTIAL BUCKETS

l\—ﬂ54

\

SPLIT RULES IN THE BUCKET
INTO SETS

|\1156

Y

MODIFY BUCKETS TO INCLUDE
LINKED LIST OF CHUNK POINTERS
TO THE SETS OF RULES

(™~ 1158

1160 END

FIG. 11A

U.S. Patent

Dec. 8, 2015 Sheet 21 of 36

1105 /‘{ START >

Y

US 9,208,438 B2

1100

ANALYZE CLASSIFIER TABLE &
PARSE TABLE INTO CATEGORIES
OF RULES

™~ 1110

Y

BUILD DECISION TREES FOR
EACH CATEGORY

|\1115

1125 END

FIG. 11B

U.S. Patent Dec. 8, 2015 Sheet 22 of 36 US 9,208,438 B2

1130

1132 /‘(START)

Y

RECEIVE PACKETS AND WALK |\ 134

PACKETS THROUGH EACH TREE

\

SELECT MATCHING RULES FOR
EACH TREE 1136
A
COMPARE PRIORITY OF EACH
MATCHING RULE 1138
A
SELECT FINAL MATCH |\ 1140

1142 END

FIG. 11C

US 9,208,438 B2

Sheet 23 of 36

Dec. 8, 2015

U.S. Patent

¢l Ol
g Y/ A V/A V/4
¥IINIO VIV 7 Vi Vi
S3INY _ _
_ — mme\«
GOzl 0Lzl
AHOMLAN JIT1dand H3IHISSY 1D
JLINYILNI LINOVNILNOY 3L¥H0dH00
Oce 0000000
0000000
| — |
0€Cl M _~0GCl
==l
3Svavivda ‘ =
YIAY3S
8&\) LINVHLNI
(MHOMLAN 43103 L08d)
GLal GeTl
Y¥3AY3S
dld

U.S. Patent Dec. 8, 2015 Sheet 24 of 36 US 9,208,438 B2

1300
P
MEMORY
1310
PACKET
RTINS CLASSIFICATION
M SERVICES
1315 1320
1345
PROCESSOR
1325
1350

s
e
i NETWORK

STORAGE INTERFACE
DEVICE 1340
133 —
| rRuLes t
1335 DB TO/FROM
NETWORK 1205, 1215

—————— AND DATA CENTER 1240

FIG. 13

US 9,208,438 B2

Sheet 25 of 36

Dec. 8, 2015

U.S. Patent

S3NY

18Y1

S13axond

ecgyl
i

eyl

33414NS
¢yl

"HSYH

US 9,208,438 B2

Sheet 26 of 36

Dec. 8, 2015

U.S. Patent

Y&l 9Old
91 8
—~ ~<0
)} POGSI 7l 0461
i , 40551
! 88) o
I Ry /x/
“] \ {0}
ghGL~ p§l \
| / \ I o
m Zvsl ,,_ BOGS|
| i
S [, —— e ——] | P
“ YA
;
A 8 00 ;
- O\
o
~] N
9vGl
A

US 9,208,438 B2

Sheet 27 of 36

Dec. 8, 2015

U.S. Patent

a9l old
q0.6) B0LS)
/ /

A

¢94l)

_——bee] X

~d

90,61

US 9,208,438 B2

Sheet 28 of 36

Dec. 8, 2015

U.S. Patent

0¢S1

905G}

oGl 9Old
yogsL BOgGlL JOSSL ©0£SL POSSL 90€GL d0EGlL BOgGl
/v VYV YV Y Y Y
wO NO @O mO vO mO NO ﬁO
"
" ey
| [
I
I
m _ °
~
“ _ |y
“ [
“ zs)
1 A
I
I
I

uzesl BzeSl Jgesl ozeSl Pzesl 9ze§l azesl ezesl

US 9,208,438 B2

Sheet 29 of 36

Dec. 8, 2015

U.S. Patent

TINN TINN
Uros| 6¥05|

005G}

480G}
)

%
¢y
I

asi 'old
18051 980G, P8OSL 980G}
M) \ M
ey ey ey
2y 2y 2y
ey By By BY
19051 oy0GL | ~PYOSL

906}
)

€Y 2y 1Y

€804}
b

<

U.S. Patent Dec. 8, 2015 Sheet 30 of 36 US 9,208,438 B2

1000~ (' START)~ 1602

Y
BUILD THE DECISION

TREE STRUCTURE 1604
Y

LINK LEAF NODES TO BUCKETS I‘\ 1606

Y

CUT NON-LEAF NODES I'\- 1608

Y

IDENTIFY DUPLICATION I’\ 1610

Y

MODIFY I'\ 1612

\ /

STORE I'\ 1614

Y

END 1616

FIG. 16

U.S. Patent Dec. 8, 2015 Sheet 31 of 36 US 9,208,438 B2

1700\ (START)~ 1702

Y

1706 ~ COMPUTE HASH |

Y

1708~ COMPARE HASH COMPUTED I

1710 @ No

YES

1716~ VALIDATE |

1718 NO o 1712
v |

YES IDENTIFY
NO BUCKET

1720~ IDENTIFY BUCKET DUPLICATION I DUPLICATION

A

END 1714

FIG. 17

U.S. Patent Dec. 8, 2015

US 9,208,438 B2

|\1808

|\1810

™~ 1812

Sheet 32 of 36
1800 \
START 1802
1804 BUCKET NO
DUPLICATION
IDENTIFIED
?
CREATE NEW
YES BUCKET
Y
LINK LEAF NODE LINK LEAF NODE
18061 TO UNIQUE BUCKET TO NEW BUCKET
Y
ASSOCIATE HASH
VALUE WITH NEW
BUCKET
\
END 1814

FIG. 18

U.S. Patent Dec. 8, 2015 Sheet 33 of 36 US 9,208,438 B2

/ 1900
(START }\ 1902

Y

PERFORM LINEAR COMPARISON I'\- 1904

1906 @ NO

YES
1908 1912
Y

PROVIDE PROVIDE
CONFIRMED NON-CONFIRMED

RESULT RESULT

Y
END 1910

FIG. 19

U.S. Patent Dec. 8, 2015 Sheet 34 of 36 US 9,208,438 B2

2000
2002 START r
2004 = e D TYPE NO
NON-MASK
?
T " 20114
2006~ INTERSECT THE FIELD |
INTERSECT RULE
l AND NODE FIELD
DESCRIPTIONS
2008~ SUBTRACT LOWER LIMIT |

)
-

Y

2010~ COMPUTE HASH |

Y

2012 END

FIG. 20

U.S. Patent Dec. 8, 2015 Sheet 35 of 36

2100\v
2102/‘(START)
Y

US 9,208,438 B2

NORMALIZE RULES

Y

COMPUTE HASH

VALUE FOR EACH SIBLING

Y

COMPARE SIBLING

HASH VALUES COMPUTED

N
2110 @ 0
YES

2114 ~ VALIDATE

2116 @

NO X
YES 2112
[v
2118~ IDENTIFY NODE IDENTIFY NO
DUPLICATION NODE DUPLICATION

>

-

Y
2120~ END)

FIG. 21

U.S. Patent Dec. 8, 2015 Sheet 36 of 36 US 9,208,438 B2

2200
/

2202 START

2204 NODE
DUPLICATION

IDENTIFIED
?

NO

Y

CREATE NEW
SUBTREE 2208

2206

NODE TO
EXISTING
SUBTREE

Y

LINK TO
NEW SUBTREE 2210

A

2212 END

FIG. 22

US 9,208,438 B2

1
DUPLICATION IN DECISION TREES

RELATED APPLICATIONS

This application is a continuation-in-part of U.S. applica-
tion Ser. No. 13/664,015, filed Oct. 30, 2012, which is a
continuation of U.S. application Ser. No. 13/565,784, filed
Aug. 2, 2012, which claims the benefit of U.S. Provisional
Application No. 61/514,344, filed on Aug. 2, 2011; U.S.
Provisional Application No. 61/514,382, filed on Aug. 2,
2011; U.S. Provisional Application No. 61/514,379, filed on
Aug. 2, 2011; U.S. Provisional Application No. 61/514,400,
filed on Aug. 2, 2011; U.S. Provisional Application No.
61/514,406, filed on Aug. 2, 2011; U.S. Provisional Applica-
tion No. 61/514,407, filed on Aug. 2, 2011; U.S. Provisional
Application No. 61/514,438, filed on Aug. 2, 2011; U.S.
Provisional Application No. 61/514,447, filed on Aug. 2,
2011; U.S. Provisional Application No. 61/514,450, filed on
Aug. 2, 2011; U.S. Provisional Application No. 61/514,459,
filed on Aug. 2, 2011; and U.S. Provisional Application No.
61/514,463, filed on Aug. 2, 2011. The entire teachings of the
above applications are incorporated herein by reference.

BACKGROUND OF THE INVENTION

The Open Systems Interconnection (OSI) Reference
Model defines seven network protocol layers (I.1-1.7) used to
communicate over a transmission medium. The upper layers
(L4-L7) represent end-to-end communications and the lower
layers (I.1-L3) represent local communications.

Networking application aware systems need to process,
filter and switch a range of .3 to L7 network protocol layers,
for example, 1.7 network protocol layers such as, HyperText
Transfer Protocol (HTTP) and Simple Mail Transfer Protocol
(SMTP), and L4 network protocol layers such as Transmis-
sion Control Protocol (TCP). In addition to processing the
network protocol layers, the networking application aware
systems need to simultaneously secure these protocols with
access and content based security through 1.4-L.7 network
protocol layers including Firewall, Virtual Private Network
(VPN), Secure Sockets Layer (SSL), Intrusion Detection
System (IDS), Internet Protocol Security (IPSec), Anti-Virus
(AV) and Anti-Spam functionality at wire-speed.

Improving the efficiency and security of network operation
intoday’s Internet world remains an ultimate goal for Internet
users. Access control, traffic engineering, intrusion detection,
and many other network services require the discrimination
of packets based on multiple fields of packet headers, which
is called packet classification.

Internet routers classify packets to implement a number of
advanced internet services such as routing, rate limiting,
access control in firewalls, virtual bandwidth allocation,
policy-based routing, service differentiation, load balancing,
traffic shaping, and traffic billing. These services require the
router to classify incoming packets into different flows and
then to perform appropriate actions depending on this classi-
fication.

A classifier, using a set of filters or rules, specifies the
flows, or classes. For example, each rule in a firewall might
specify a set of source and destination addresses and associate
a corresponding deny or permit action with it. Alternatively,
the rules might be based on several fields of a packet header
includinglayers 2, 3,4, and 5 of the OSI model, which contain
addressing and protocol information.

On some types of proprietary hardware, an Access Control
List (ACL) refers to rules that are applied to port numbers or
network daemon names that are available on a host or layer 3

20

25

30

35

40

45

50

55

2

device, each with a list of hosts and/or networks permitted to
use a service. Both individual servers as well as routers can
have network ACLs. ACLs can be configured to control both
inbound and outbound traffic.

SUMMARY OF THE INVENTION

A system, method, and corresponding apparatus relates to
classifying packets.

A method may use a classifier table having a plurality of
rules, the plurality of rules having at least one field, and build
a decision tree structure including a plurality of nodes. Each
node may represent a subset of the plurality of rules. For each
node of the decision tree, the method may (a) determine a
number of cuts that may be made on each at least one field
creating child nodes equal to the number of cuts; (b) select a
field on which to cut the node based on a comparison of an
average of a difference between an average number of rules
per child node created and an actual number of rules per child
node created per each at least one field; (c) cut the node into
a number of child nodes on the selected field, and store the
decision tree structure.

The method may further determine the number of cuts that
may be made on each at least field based on a maximum
number of cuts for a given storage capacity.

The method may select the field on which to cut the node
into a number of child nodes based on the field being a field of
the at least one field with the smallest average of the differ-
ence between an average number of rules per child node and
an actual number of rules per child node.

The method may cut the node only if the node has greater
than a predetermined number of the subset of the plurality of
rules. The predetermined number may be an adjustable num-
ber. The method may further control a depth of the decision
tree structure by iteratively adjusting the predetermined num-
ber. Adjusting the predetermined number may include incre-
menting the predetermined number with increasing levels of
the tree.

If cutting creates a plurality of child nodes and only one
child node has a subset of the plurality of rules, the method
may store at the node an identifier of a field of the at least one
field and a number of bits of the field of the at least one field
to skip upon traversing the node to obtain a rule match. The
number of bits of the field of the at least one field to skip may
be the same number as a number of bits used to cut the node.

While building the decision tree structure, the method may
further include, for each level of the decision tree, comparing
a subset of rules represented by child nodes having a same
parent node. The method may identify a set of duplicate child
nodes, the set of duplicate child nodes may be a duplicate
subset of the plurality of rules. The method may select one
child node of the set of duplicate child nodes identified as a
unique child node. The method may link the other child nodes
of'the set of duplicate child nodes identified to a same subtree
as the unique child node. The method may use the unique
child node for subsequent building of the decision tree struc-
ture and refraining from using the other child nodes of'the set
of duplicate child nodes identified for subsequent building of
the decision tree structure.

While building the decision tree, the method may further
include, for each level of the decision tree, identifying partial
duplicate nodes on a level of the decision tree. Partial dupli-
cate nodes may be a partial duplicate of the subset of the
plurality of the rules. The method may create a new node on
the level of the decision tree based on one or more partial
duplicate nodes being identified. The partial duplicate of the

US 9,208,438 B2

3

subset of the plurality of the rules may be included in the new
node created and removed from the partial nodes identified.

A method may group the plurality of rules in the classifier
table into a plurality of categories of rules. The method may
build a decision tree structure including a plurality of nodes
for each of the plurality of categories of rules. The plurality of
categories of rules may be based on one or more field func-
tions, or combinations of the one or more field functions,
applied to the plurality of rules. One or more field functions
may include applying a no Internet Protocol (IP) address
wildcard, source IP but not destination IP wildcard, destina-
tion IP but no source IP wildcard, destination and source
address wildcard, field range comparison, one or more masks
associated with one or more of the at least one field. The
method may further include walking a received packet
through each decision tree built and comparing the resulting
rules from each tree to select a final match. The final match
selected may be the rule with a highest priority.

The method may further convert each child node having a
number of rules less than or equal to a given number of rules
to aleatnode. The method may create a corresponding bucket
for each child node converted. The corresponding bucket may
include rules of the child node converted. The method may
link each leaf node to the corresponding bucket created. A set
of duplicate buckets may be identified, the duplicate buckets
each including a same set of rules. The method may select one
bucket of the set of duplicate buckets and remove other buck-
ets of the set of duplicated bucket. The method may change
links to removed buckets to links to the one bucket selected.

The method may further identify a set of partial duplicate
buckets. Partial duplicate buckets may each include a dupli-
cate partial set of rules. The method may separate rules in
each bucket in the set of partial duplicate buckets into a first
and second set of rules for each bucket. The first set of rules
for each bucket may include the duplicate partial set of rules
and the second set of rules for each bucket may include any
remaining rules for each bucket. The method may create a
link in each partial duplicate bucket to the first set of rules and
create a link in each partial duplicate bucket to the second set
of rules. Each partial duplicate bucket may include a linked
list of pointers to the first and second set of rules.

The decision tree structure may be compiled from the
classifier table.

A priority corresponding to each rule may be stored in the
decision tree structure.

The method may further determine whether or not a rule is
covered by one or more other rules and omit the rule from the
decision tree structure if the rule is covered.

A method may use a classifier table having a plurality of
rules, the plurality of rules having at least one field, for build-
ing a decision tree structure including a plurality of nodes.
Each node may include a subset of the plurality of rules. The
method may determine for each level of the decision tree
whether to merge grandchildren of a parent node with child
nodes of the parent node based on a resulting total number of
child nodes of the parent node not being more than a given
threshold. The method may store the decision tree structure.
The method may further merge the cuts of a child node into
the cuts of the parent node resulting in new child nodes of the
parent node. The cuts of the child node may be on a same field
as the parent node cuts or the cuts of the child node may be on
a different field than the parent node cuts. The given threshold
may be adjustable. The method may iteratively adjust the
given threshold and merge grandchildren of a parent node
with child nodes of the parent node until a resulting number of
child nodes of the parent node reaches a given threshold
number of child nodes.

20

30

40

45

55

4

A method may use a classifier table having a plurality of
rules, the plurality of rules having at least one field, for build-
ing a decision tree structure including a plurality of nodes.
Each node may include a subset of the plurality of rules. The
method may group rules based on whether or not rules com-
pete. The method may assign priority values to the plurality of
rules and assign unique priority values within each group of
competing rules. The method may enable non-competing
rules to have a same priority value. The method may store the
decision tree structure and include storing the plurality of
rules and the priority value assigned.

An apparatus may include a memory and a processor
coupled to the memory. The processor may be configured to
use a classifier table having a plurality of rules stored in the
memory, the plurality of rules having at least one field, the
processor may be configured to build a decision tree structure
including a plurality of nodes, the plurality of nodes including
a subset of the plurality of rules. The processor may further be
configured to determine, for each node of the decision tree, a
number of cuts that may be made on each at least one field
creating child nodes equal to the number of cuts. While deter-
mining the number of cuts that may be made on each at one
least field, the processor may further be configured to select a
field on which to cut the node based on a comparison of an
average of a difference between an average number of rules
per child node created and an actual number of rules per child
node created per each at least field. The processor may further
be configured to cut the node into a number of child nodes on
the selected field and to store the decision tree structure in the
memory.

A non-transitory computer-readable medium may have
encoded thereon a sequence of instructions which, when
executed by a processor, causes the processor to use a classi-
fier table having a plurality of rules, the plurality of rules
having atleast one field, build a decision tree structure includ-
ing a plurality of nodes, the plurality of nodes including a
subset of the plurality of rules; determine, for each node of the
decision tree, a number of cuts that may be made on each at
least one field creating child nodes equal to the number of
cuts; select, upon determining the number of cuts that may be
made on each at one least field, a field on which to cut the node
based on a comparison of an average of a difference between
an average number of rules per child node created and an
actual number of rules per child node created per each at least
one field. The processor may cut the node into a number of
child nodes on the selected at least field and store the decision
tree structure.

The processor may select the field on which to cut the node
into a number of child nodes based on the at least one field
with the smallest average of the difference between an aver-
age number of rules per child node and an actual number of
rules per child node.

A method may comprise using a classifier table having a
plurality of rules, the plurality of rules having at least one
field, building a decision tree structure including a plurality of
nodes, each node representing a subset of the plurality of
rules, and identify duplication in the decision tree structure.
The method may include modifying the decision tree struc-
ture based on the identified duplication and storing the modi-
fied decision tree structure. The plurality of nodes may
include parent nodes and child nodes. Identifying may
include, for each level of the decision tree, comparing a subset
ofrules represented by child nodes having a same parent node
and identifying a set of duplicate child nodes. The set of
duplicate child nodes may have a duplicate subset of the
plurality of rules. Modifying may includes selecting one child
node of the set of duplicate child nodes identified as a unique

US 9,208,438 B2

5
child node and linking the other child nodes of the set of
duplicate child nodes identified to a same subtree as the
unique child node.

The method wherein the plurality of nodes includes parent
nodes and child nodes may further comprise converting each
child node having a number of rules less than or equal to a
given number of rules to a leaf node, creating a corresponding
bucket for each child node converted, the corresponding
bucket including rules of the child node converted, linking
each leaf node to the corresponding bucket created, identify-
ing a set of duplicate buckets, duplicate buckets each includ-
ing a same set of rules, selecting one bucket of the set of
duplicate buckets and removing other buckets of the set of
duplicated buckets, and changing links to removed buckets to
links to the one bucket selected.

The method wherein the plurality of nodes includes parent
nodes and child nodes may further comprise converting each
child node having a number of rules less than or equal to a
given number of rules to a leaf node, creating a corresponding
bucket for each child node converted, the corresponding
bucket including rules of the child node converted, linking
each leaf node to the corresponding bucket created, identify-
ing a set of partial duplicate buckets, partial duplicate buckets
each including a duplicate partial set of rules, separating rules
in each bucket in the set of partial duplicate buckets into a first
and second set of rules for each bucket, the first set of rules for
each bucket including the duplicate partial set of rules and the
second set of rules for each bucket including any remaining
rules for each bucket, and creating a link in each partial
duplicate bucket to the first set of rules and creating a link in
each partial duplicate bucket to the second set of rules. Each
partial duplicate bucket includes a linked list of pointers to the
first and second set of rules.

According to another embodiment, a method may com-
prise building a decision tree structure representing a plural-
ity of rules using a classifier table having the plurality of rules.
The plurality of rules may have at least one field. The method
may include a plurality of nodes in the decision tree structure,
each node may represent a subset of the plurality of rules.
Each node may have a leaf node type or a non-leafnode type.
The method may link each node having the leaf node type to
a bucket. Each node having the leaf node type may be a leaf
node. The bucket may represent the subset of the plurality of
rules represented by the leaf node. The method may cut each
node having the non-leaf node type on one or more selected
bits of a selected one or more fields of the at least one field
creating one or more child nodes. The one or more child node
created may have the non-leaf node type or the leaf node type.
Each node cut may be a parent node of the one or more child
nodes created. The one or more child nodes created may
represent one or more rules of the parent node. The method
may identify duplication in the decision tree structure. The
method may modify the decision tree structure based on the
identified duplication, and the method may store the modified
decision tree structure.

Identifying duplication may include, for each leaf node,
computing a hash value based on each rule and a total number
of rules represented by the leaf node. The method may com-
pare the hash value computed to hash values associated with
unique buckets. The method may identify no bucket duplica-
tion if none of the hash values associated with the unique
buckets match the hash value computed. The method may
validate the comparison if a given hash value associated with
a given bucket of the unique buckets matches the hash value
computed to provide either a confirmed or a non-confirmed
result of the comparison. The method may identify bucket

10

15

20

25

30

35

40

45

50

55

60

65

6

duplication based on the confirmed result being provided and
may identify no bucket duplication based on the non-con-
firmed result being provided.

Modifying the decision tree structure based on the identi-
fied duplication may include linking the leafnode to the given
bucket based on bucket duplication being identified. The
method may create a new bucket representing the subset of
the plurality of rules represented by the leafnode, link the leaf
node to the new bucket created, and associate the hash value
computed with the new bucket created based on no bucket
duplication being identified.

Validating the comparison may include performing a linear
comparison between each rule ofthe leafnode and rules of the
given bucket. The method may provide the confirmed result
based on an exact match of the performed linear comparison
and may provide the non-confirmed result based on a non-
exact match of the performed linear comparison.

The method may include maintaining a list of all unique
buckets linked to leaf nodes. Unique buckets may be allocated
buckets associated with unique hash values.

The method may store the unique buckets in a bucket
database.

The method may store the unique hash values in the deci-
sion tree structure.

Normalizing each field of the at least one field of the rule
against the leaf node’s range for the field may be based on a
field type of the field.

Ifthe field type is a non-mask field type, normalization may
include intersecting the field with the leaf node’s range for the
field and subtracting a lower limit of the leaf node’s range for
the field from the lower and upper limits of the intersection to
compute a normalized region. The hash value computed may
be based on the normalized region computed.

If the field type is a mask field type, normalization may
include intersecting the leaf node’s description for the field
with the rule’s description for the field on a bit-by-bit basis to
compute a normalized region. The hash value computed may
be based on the normalized region computed. The leafnode’s
description and the rule’s description for the field may be
bitstrings representing the possible values for the field by
designating each bit of a respective bitstring as a zero, one, or
don’t care value. A don’t care value may be enumerated as a
zero and a one for purposes of determining the possible val-
ues. Intersecting the leaf node’s description for the field with
the rule’s description for the field on a bit-by-bit basis may
include applying a set of intersection rules. The set of inter-
section rules may include a don’t-care bit intersected with
another don’t-care bit yields the don’t-care bit, a value inter-
sected with an equal value yields the value, the don’t-care bit
intersected with the value yields the value, and the value
intersected with an unequal value yields an empty intersec-
tion.

Identifying duplication may include for each level of the
decision tree, normalizing each rule of the one or more rules
represented by child nodes having a same parent node to a
respective rule range for a respective child node. Child nodes
having the same parent node may be siblings. The method
may compute a hash value for each sibling from the normal-
ized one or more rules of the sibling and a total number of the
one or more rules represented by the sibling. The method may
compare the computed hash values for the siblings and iden-
tify no node duplication based on no computed hash values
being compared equal. The method may validate the com-
parison based on a computed hash value for a sibling being
compared equal to a computed hash value for another sibling
to provide either a confirmed or a non-confirmed result of the
comparison. The method may identify a duplicate node based

US 9,208,438 B2

7

on the confirmed result being provided and may identify no
node duplication based on the non-confirmed result being
provided.

Modifying the decision tree structure based on the identi-
fied duplication may include linking the sibling to a same
subtree linked to the identified duplicate node based on the
duplicate node being identified. The method may create a new
subtree and link the sibling to the new subtree based on no
node duplication being identified.

Validating the comparison may include performing a linear
comparison between each of the normalized one or more
rules represented by the sibling and normalized rules repre-
sented by another sibling having the computed hash value.
The method may provide the confirmed result based on an
exact match of the performed linear comparison and may
provide the non-confirmed result based on a non-exact match
of the performed linear comparison.

Normalizing each rule of the one or more rules represented
by the sibling may include for each rule, normalizing each
field of the at least one field of the rule against the sibling’s
range for the field.

Normalizing each field of the at least one field of the rule
against the sibling’s range for the field may be based on a field
type of the field.

If'the field type is a non-mask field type, normalization may
includes intersecting the field with the sibling’s range for the
field and subtracting a lower limit of the sibling’s range for
the field from the lower and upper limits of the intersection to
compute a normalized region. The hash value computed may
be based on the normalized region computed.

If the field type is a mask field type, normalization may
include intersecting the sibling’s description for the field with
the rule’s description for the field on a bit-by-bit basis to
compute a normalized region. The hash value computed may
be based on the normalized region computed.

The sibling’s description and the rule’s description for the
field may be bitstrings representing the possible values for the
field by designating each bit of a respective bitstring as a zero,
one, or don’t care value. A don’t care value may be enumer-
ated as a zero and a one for purposes of determining the
possible values.

Intersecting the sibling’s description for the field with the
rule’s description for the field on a bit-by-bit basis may
include applying a set of intersection rules. The set of inter-
section rules may include: a don’t-care bit intersected with
another don’t-care bit yields the don’t-care bit, a value inter-
sected with an equal value yields the value, the don’t-care bit
intersected with the value yields the value, and the value
intersected with an unequal value yields an empty intersec-
tion.

Another example embodiment disclosed herein includes
an apparatus corresponding to operations consistent with the
method embodiments described above.

Further, yet another example embodiment may include a
non-transitory computer-readable medium having stored
thereon a sequence of instructions which, when loaded and
executed by a processor, causes the processor to complete
methods consistent with the method embodiments described
above.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more
particular description of example embodiments of the inven-
tion, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout
the different views. The drawings are not necessarily to scale,

10

15

20

25

30

35

40

45

50

55

60

8

emphasis instead being placed upon illustrating embodi-
ments of the present invention.

FIG. 1 illustrates a classifier table including rules for clas-
sifying a packet.

FIG. 2 illustrates a geometric representation of the rules of
the classifier table illustrated in FIG. 1.

FIG. 3A illustrates a decision tree data structure compiled
from the classifier table illustrated in FIG. 1.

FIG. 3B illustrates depth of a decision tree data structure.

FIG. 3C illustrates depth and shape of decision tree data
structures.

FIG. 4 is a flow diagram of a method for building a decision
tree.

FIG. 5 is a flow diagram of a method for determining a field
on which to cut a node.

FIG. 6 is a diagram illustrating cuts made to fields of rules
in a classification table.

FIG. 7 is a flow diagram of a method for merging nodes of
a decision tree.

FIG. 8A-C show a graphical example of merging nodes.

FIG. 9A shows a graphical example of a node cut resulting
in a child node having all the rules of a classifier table.

FIG. 9B is an illustration of a tree, a leaf node pointing to a
bucket containing a set of rules of a classifier rule table.

FIG. 9Cis ablock diagram illustrating an example embodi-
ment of compiling a set of rules into a decision tree data
structure.

FIG. 9D illustrates a decision tree data structure including
a tree, buckets, and rules.

FIG. 10A is a flow diagram that illustrates a method iden-
tifying the child nodes that contain the same rule set.

FIG. 10B is a flow diagram of a method for priority dupli-
cation.

FIG. 10C-D illustrate a graphical example of removing
duplicate buckets of rules in a node of a decision tree.

FIG. 10E illustrates a method for removing duplicate buck-
ets of rules in a node of a decision tree.

FIG. 10F illustrates a graphical example of removing
duplicate buckets of rules from non-sibling nodes of a deci-
sion tree.

FIG. 10G illustrates a graphical example of removing par-
tial duplicate buckets of rules in a node of a decision tree.

FIG. 11A is a flow diagram of a method for partial dupli-
cate buckets of rules in a node of a decision tree.

FIG. 11B illustrates a method for parsing a compiler table
into categories of rules and building decision trees for each
category.

FIG. 11C illustrates a method for selecting a matching rule.

FIG. 12 is a block diagram illustrating a system in which a
packet classifier operates to classify packets to provide
interne services to a private network.

FIG. 13 is a block diagram of a router that may classify
packets according to techniques disclosed herein.

FIG. 14 is a diagram of another example embodiment of a
decision tree data structure including a tree, buckets, and
rules.

FIG. 15A shows an example embodiment of a graph of a
rule normalized to a region.

FIG. 15B shows an example embodiment of a graph of a
rule normalized to regions of nodes.

FIG. 15C is a block diagram of an example embodiment of
a graph of the search space.

FIG. 15D is block diagram of an example embodiment of a
root node cut into 8 children.

FIG. 16 is a flow diagram of an example embodiment of a
method for building a decision tree structure.

US 9,208,438 B2

9

FIG. 17 is an example embodiment of a method for iden-
tifying bucket duplication for a leaf node.

FIG. 18 is a flow diagram of an example embodiment for
modifying the decision tree structure based on the identified
duplication.

FIG. 19 is a flow diagram of an example embodiment for
validating a comparison.

FIG. 20 is flow diagram of an embodiment for normalizing
a field.

FIG. 21 is flow diagram of an embodiment of a method for
identifying node duplication for a level of the decision tree.

FIG. 22 is a flow diagram of an example embodiment of a
method for modifying the decision tree structure based on the
identified duplication.

DETAILED DESCRIPTION OF THE INVENTION

A description of example embodiments of the invention
follows.

The teachings of all patents, published applications and
references cited herein are incorporated by reference in their
entity.

Although packet classification has been widely studied for
a long time, researchers are still motivated to seek novel and
efficient packet classification solutions due to: i) the continual
growth of network bandwidth, ii) increasing complexity of
network applications, and iii) technology innovations of net-
work systems.

Explosion in demand for network bandwidth is generally
due to the growth in data traffic. Leading service providers
report bandwidths doubling on their backbone networks
about every six to nine months. As a consequence, novel
packet classification solutions are required to handle the
exponentially increasing traffics on both edge and core
devices.

Complexity of network applications are increasing due to
the increasing number of network applications being imple-
mented in network devices. Packet classification is widely-
used for various kinds of applications, such as service-aware
routing, intrusion prevention and traffic shaping. Therefore,
novel solutions of packet classification must be more intelli-
gent to handle diverse types of rule sets without significant
loss of performance.

In addition, new technologies, such as multi-core proces-
sors provide unprecedented computing power, as well as
highly integrated resources. Thus, novel packet classification
solutions must be well suited to advanced hardware and soft-
ware technologies.

Before describing example embodiments in detail, an
example packet classification system and related methods are
described immediately below to help the reader understand
the inventive features described herein.

Existing packet classification methods trade memory for
time. Although the tradeoffs have been constantly improving,
the time taken for a reasonable amount of memory is still
generally poor. Because of problems with existing methods,
vendors use ternary content-addressable memory (TCAM),
which uses brute-force parallel hardware to simultaneously
check packets against all rules. The main advantages of
TCAMs over existing methods are speed and determinism
(TCAMs work for all databases).

A TCAM is a hardware device that functions as a fully
associative memory. A TCAM cell stores three values: 0, 1, or
‘X, which represents a don’t-care bit and operates as a per-
cell mask enabling the TCAM to match rules containing
wildcards (e.g., don’t care bits). In operation, a whole packet
header can be presented to a TCAM to determine which entry

15

25

35

40

45

10

(rule) it matches. However, the complexity of TCAMs has
permitted only small, inflexible, and relatively slow imple-
mentations that consume a lot of power. Therefore, a need
continues for efficient methods operating on specialized data
structures.

Current methods remain in the stages of mathematical
analysis and/or software simulation (observation based solu-
tions). Proposed mathematic solutions have been reported to
have excellent time/spatial complexity. However, methods of
this kind have not been found to have any implementation in
real-life network devices because mathematical solutions
often add special conditions to simplify a problem and/or
omit large constant factors which might conceal an explicit
worst-case bound.

Proposed observation based solutions employ statistical
characteristics observed in rules to achieve efficient solution
for real-life applications. However, these observation based
methods generally only work well with specific types of rule
sets. Because packet classification rules for difference appli-
cations have diverse features, few observation based methods
are able to fully exploit redundancy in different types of rule
sets to obtain stable performance under various conditions.

Packet classification is performed using a packet classifier,
also called a policy database, flow classifier, or simply a
classifier. A classifier is a collection of rules or policies.
Packets received are matched with rules, which determine
actions to take with a matched packet. Generic packet classi-
fication requires a router to classify a packet on the basis of
multiple fields in a header of the packet. Each rule of the
classifier specifies a class that a packet may belong to, accord-
ing to criteria on ‘F’ fields of the packet header, and associates
an identifier (e.g., class ID) with each class. For example,
each rule in a flow classifier is a flow specification, in which
each flow is in a separate class. The identifier uniquely speci-
fies an action associated with each rule. Each rule has ‘F’
fields. An ith field of a rule R, referred to as R[i], is a regular
expression on the ith field of the packet header. A packet P
matches a particular rule R if for every 1, the ith field of the
header of P satisfies the regular expression R[i].

Classes specified by the rules may overlap. For instance,
one packet may match several rules. In this case, when several
rules overlap, an order in which the rules appear in the clas-
sifier may determine the rule’s relative priority. In other
words, a packet that matched multiple rules belongs to the
class identified by the identifier (class ID) of the rule among
them that appears first in the classifier. Alternatively, a unique
priority associated with a rule may determine its priority, for
example, the rule with the highest priority.

Packet classifiers may analyze and categorize rules in a
classifier table and create a decision tree that is used to match
received packets with rules from the classifier table. A deci-
sion tree is a decision support tool that uses a tree-like graph
or model of decisions and their possible consequences,
including chance event outcomes, resource costs, and utility.
Decision trees are commonly used in operations research,
specifically in decision analysis, to help identify a strategy
most likely to reach a goal. Another use of decision trees is as
a descriptive means for calculating conditional probabilities.
Embodiments described herein utilize decision trees to selec-
tively match a received packet with a rule in a classifier table
to determine how to process the received packet.

A decision tree of rules, or tree, represents a set of rules.
The decision tree may also be called a Rule Compiled Data
Structure (RCDS) or a performance tree. The tree is a binary
data structure having nodes and leaves. Each leaf of the tree
points to a subset of the rules, called a bucket of rules, or
bucket. Each of the buckets represents a subset of the rules.

US 9,208,438 B2

11

Each bucket is a data structure (e.g., an array) containing
pointers to rules, which are stored in a rule table. Rules (or
pointers to rules) within a bucket are ordered by priority (e.g.,
in increasing or decreasing priority). A rule table is a data
structure (e.g., an array) containing the rules. Rules within the
rule table may be ordered or unordered.

FIG. 1 illustrates a classifier table 100 including rules for
classifying a packet. As illustrated, the classifier table con-
tains seven rules (R1-R7), each containing two fields, Field-1
110, and Field-2 115. Although the table illustrates rules
being 2-tuple (e.g., containing only two fields), it should be
noted that rules may contain an n number of fields and be
n-tuple. Each rule specifies a range of values (e.g., Internet
Protocol (IP) addresses or Layer 4 ports or protocols) in each
dimension (field). For example, Field-1 may be represented in
the x-dimension of an x/y graph, while Field-2 may be rep-
resented in the y-dimension of an x/y graph.

FIG. 2 illustrates a geometric representation of the rules of
the classifier table 100. The rules range from values 0-255 in
both the x-dimension 205 and y-dimension 210. As illus-
trated, each dimension ofthe graph is subdivided based on the
ranges of each field of each rule from classifier table 100.

FIG. 3A illustrates a decision tree data structure 300 com-
piled from the classifier table 100. The decision tree 300
contains a set of elements called nodes (301, 305, 310, 315,
320, 325, 330) that are empty or satisfy one of the following
conditions: i) there is a distinguished node r, called the root
node, and ii) the remaining nodes are divided into disjoint
subsets, each of which is a sub-tree. As illustrated, node 301
is the root node of the decision tree and a parent node of nodes
305, 310, 325, and 330, which are considered child nodes of
root node 301. The degree of a node is the number of non-
empty sub-trees the node contains. A node with degree zero is
considered a leaf node. Thus, nodes 305, 315, 320, 325, and
330 are considered leaf nodes. Nodes with a positive degree
are internal nodes (e.g., node 310).

Each node of the decision tree 300 contains a subset of
rules of a classifier table. As stated above, each rule has ‘F’
fields and an ith field of a rule R, referred to as R[], is aregular
expression on the ith field of a received packet header. A
packet P matches a particular rule R if for every i, the ith field
of the header of P satisfies the regular expression R[i]. Thus,
when a packet is received, a decision tree is walked (e.g., by
aruntime walker) to determine a matching rule, which is used
to determine an action to take with the received packet.

For example, if a packet is received that contains headers
matching rule R7 (see FIG. 1), decision tree 300 is walked
(e.g., traversed) to find matching rule R7. Thus, the packet is
first passed through root node 301, which contains all rules of
the packet classification table, which has been cut into four
children. Cutting a node refers to subdividing the node into n
number of child nodes. The n number of child nodes created
corresponds to the number of cuts (subdivisions) of the node
that are made. In this example, the rules in root node 301 have
been subdivided into four rule lists (e.g., corresponding to
each child node 305, 310, 325, and 330). Thus, it is deter-
mined that the packet should be passed to child node 330 that
contains a subset of rules having fields within a range of each
header of the received packet. After the packet is passed to
node 330, the packet is matched with rule R7.

Example embodiments described herein build a decision
tree data structure by carefully preprocessing a classifier.
Each time a packet arrives, the runtime walker traverses the
decision tree to find a leaf node that stores a small number of
rules. Once the leaf node is reached, a linear search of the
rules within the leaf node occurs to find a matching rule.

10

15

20

25

30

35

40

45

50

55

60

12

During building of the decision tree, embodiments
described herein determine the shape and depth of the deci-
sion tree.

FIG. 3B illustrates a decision tree data structure 350 that
includes a root node 352, and leaf nodes 354a-e, and has a
depth 356.

FIG. 3C illustrates depth and shape of decision tree data
structures (360). For example tree data structure 362 has a
depth 366 that is shallow in comparison to the depth 368 of
decision tree data structure 364. The number of subtrees in the
decision tree data structure may alter the shape of the decision
tree data structure, for example a single subtree 370 versus a
group of subtrees 372.

In addition, embodiments described herein determine
which field to cut at a node of the decision tree and the number
of cuts to make on the field to create child nodes based on the
field cut and the number of cuts made on the field.

FIG. 4 is a flow diagram of a method 400 for building a
decision tree. The method begins (405). The method analyzes
aclassifier table including rules for classifying a packet (410).
As stated above, each rule in the classifier table has ‘F’ fields.
The method analyzes the classifier table to determine a num-
ber of rules and a number of fields associated with each rule.
Based on the analysis, at 415, the method determines a maxi-
mum number of cuts that can be made on each field ‘F’ of the
rules. For example, a maximum number of cuts may be based
on a given storage capacity. The method, for each node of the
decision tree, may determine the field ‘F’ on which to cut the
node to create child nodes (420), then the method ends (425).
Determining the number of cuts that can be made on each
field ‘F’ may balance efficiency and memory requirements. A
large number of cuts on a field may decrease a decision tree’s
depth, accelerating query time; however, too large a number
of cuts increases storage demand.

FIG. 5 illustrates a flow diagram of a method 500 for
determining a field on which to cut a node. By computing, for
each field’s cut, an average number of rules in the children
produced by that cut, the difference between each child’s
actual number of rules and the average may be computed, and
those differences may then be averaged, such that the field
with the smallest such difference average may be selected. A
tree that is shallower on average may be built, resulting in a
shorter search time.

The method begins (505) and, based on the determined
number of cuts to be made on each field (415 of method 400),
determines an average number of rules in child nodes pro-
duced by cutting each field (510). The method computes a
difference between an actual number of rules in each child
node number of rules and the determined average number of
rules in each child node (515). The method computes the
average of the differences computed (520). The method cuts
a node of the decision tree on the field with the smallest
average difference (525).

Methods 400 and 500 are iterated on each node of the
decision tree, until leaf nodes are created having no more than
a given number of rules. The given number is adjustable.
Methods 400 and 500 begin building a decision tree by start-
ing with a root node that represents a complete rule list. Using
method 400, a determination is made as to the number of cuts
to be made on each dimension (field).

Once a determination is made as to the number of cuts to be
made on each dimension, method 500 is used to determine
which dimension to cut the root node of the decision tree. The
cut on the root node causes child nodes to be created. Methods
400 and 500 are repeated on each child node until the only
nodes remaining are leaf nodes (e.g., a node where no addi-
tional cuts can be made based on the number of rules in the

US 9,208,438 B2

13

child node and a given adjustable threshold number of rules
for the child node). In other words, local decisions are taken
at each node which results in the overall decision tree.

FIG. 6 is a diagram illustrating cuts made to fields of rules
in a classification table. Field-1 601 of a classifier table has
been cut into 4 children, with each child containing 6, 4, 8,
and 2 rules respectively. Field-2 605 of a classifier table has
also been cut into 4 children containing 4, 6, 4, and 6 rules
respectively. Referring to 510 of method 500, an average
number of rules in child nodes by cutting each field are
determined As illustrated in FIG. 6, the average number of
rules in both Field-1 and Field-2 per child node is 5 rules.
Further, FIG. 6 illustrates the computed difference between
the actual number of rules in each child node and the average
difference, corresponding to 515 of method 500. The average
of the calculated differences is then computed. For Field-1
601 the average difference is 2, while the average difference
for Field-2 605 is 1. Thus, referring to 525 of method 500, a
node is cut on Field-2 605 because the average difference is
less than the average difference calculated for Field-1.

Once a cut for a node has been chosen, embodiments
described herein determine whether to merge cuts made by a
node’s children. Merging entails grouping a parent node and
the parent node’s children into a single node. For example, if
child nodes are cut on fields different than the parent node, the
result would be a parent node that cuts on multiple fields.

In addition, child nodes that cut on the same field as the
parent node may also be merged with the parent node by
relaxing a space limit. The node resulting from the merge may
have up to the absolute maximum number of children; for
example, it is not constrained by a heuristic such as a maxi-
mum-space formula.

For example, a rule set (e.g., classifier table) may contains
rules with 3 tuples or fields, F1, F2 and F3. In this example, a
root node (NO) may cut on F1 and a number of cuts may be
four. For example, 2 bits of F1 may be taken to decide a cut
identifier. The result may be that the root node has 4 children,
for example, N1, N2, N3 and N4. If N1 is cuton F1 and has 4
cuts, for example, 2 bits of F1 are taken to decide the cut
identifier, N1 would have 4 children, for example, N11, N12,
N13,N14.IfN2 is cuton F2 and has 4 cuts, for example, 2 bits
of F2 are taken to decide a cut identifier, N2 will have 4
children, for example, N21, N22,N23,N24.IfN3 iscutonF1
and has 4 cuts, for example 2 bits of F1 are taken to decide the
cut identifier, N3 will have 4 children, for example N31, N32,
N33,N34.If N4 is cut on F3 and has 4 cuts, for example 2 bits
of F3 are taken to decide the cut identifier; N4 would have 4
children, for example, N41, N42, N43, N44. The example
describes that NO may be cut on 3 fields, for example F1, F2
and F3 and the total cuts would be 256. The 4 bits of F1, 2 bits
of F2 and 2 bits of F3 may be combined as 8 bits to cut NO,
resulting in 256 children. A lesser number of levels is pro-
vided as there are only 2 levels as compared to the earlier 3
levels. Thelayer of N1, N2, N3, N4 has been removed, and the
root node NO and has its 256 children. A resultin this example
is that a total number of nodes in the tree is 257, as compared
to 21 in original tree before merging. A balance is made
between storage and performance tradeoff. For example, lev-
els of the tree may be reduced at the expense of more nodes in
tree.

FIG. 7 is aflow diagram of a method 700 for merging nodes
of a decision tree. The method begins (705) and determines
the field and number of child nodes to be created for the
original node (e.g., a parent node) (710). The method makes
a similar determination for each of'the child nodes (715). The
method determines the number of child nodes that results
from a merge (720). The method determines if the resulting

20

35

40

45

55

60

14

number of child nodes is within a predetermined maximum
number of child nodes (725). If not, the method ends (735). If
s0, the method merges the nodes (730). Method 700 iterates
for new sets of child nodes until merging is no longer pos-
sible. The predetermined maximum may be adjusted at each
iteration. As a result, trees may be built that are wider and
shallower, resulting in shorter search times.

FIG. 8A-C shows a graphical example of merging nodes.
FIG. 8A is a graphical example of cuts made on fields of rules
in a classifier table on a single node 801. For example, FIG.
8A illustrates a single node 801 that has rules having only two
fields Field-1 805 and Field-2 810. Node 801 has been sub-
divided (e.g., cut) into four child nodes 815, 820, 825, and
830, as represented by the subdivisions of Field-1 805.

FIG. 8B illustrates the cuts made on the child nodes 815,
820, 825, 830 of node 801. For example, child node 815 has
been cut on Field-1 805 creating child nodes 835 and 840.
Child nodes 820, 825, and 830 have been cut on Field-2 810
creating child nodes 845-870.

FIG. 8C illustrates the merging of child nodes 815-830 and
835-870. As illustrated, root node 801 is now cut on both
Field-1 805 and Field-2 810 creating 16 child nodes.

Sometimes, even when a node is cut into the maximum
number of children, only one child has any rules, because all
the node’s rules are clustered into one small area of a search
space.

FIG. 9A shows a graphical example of a node 901 that has
been cut resulting in a child node 915 having all the rules 920
of a classifier table. Even after cutting both Field-1 905 and
Field-2 910 by a factor of 8, into a total of 64 children, all of
the node’s original rules are inherited by a single child node
915. A runtime walker may be used to traverse a received
packet through the decision tree data structure to obtain a
matching rule. In this case, the runtime walker may have to
spend time traversing this node, but does not achieve any
subdivision of the search space. A key, such as data extracted
from header tuples of the packet, may be used by the runtime
walker for matching against rules. In this case, the only thing
the runtime walker achieves is consuming the next few bits of
the key in order to get down to the bits that can be used to
choose among the rules. Embodiments herein may store, at
each node, a number ofbits a runtime walker should skip over
as well as the number (identifier) of the field whose bits are to
be skipped, when the walker traverses the node. As a result,
the number of tree nodes that a runtime walker must traverse
may be reduced, resulting in shorter search times.

Embodiments described herein include at least three data
structures that include: 1) a tree, ii) buckets, and iii) a rule
table. A tree includes nodes and leaf nodes. [.eaf nodes may
be linked to buckets. The leaf nodes may point to buckets,
buckets may contain a set of rules. Embodiments described
herein may store rules in common tables and the buckets
pointed to by leaf nodes may contain rule numbers corre-
sponding to the rules in the rules table. Buckets may include
rules in any suitable manner as may be known to one skilled
in the art. Each bucket may be a data structure that may
include one or more bucket entries. A bucket entry may be a
rule, an index to a rule, a pointer to a rule, a pointer to a set of
rules, or a pointer to another bucket. A bucket may include a
linked list to the rules. A bucket may include entries including
any combination thereof. For example, a bucket may have one
entry that is a pointer to a rule and one entry that is a pointer
to a set of rules, etc. Rule priority may be stored with a rule or
linked to a rule in any suitable manner.

FIG. 9B is an illustration of an example embodiment of a
tree 950, a leaf node 952 pointing to (960) a bucket 954
containing a set of rules 956 of a classifier rule table 958.

US 9,208,438 B2

15

FIG. 9C is a block diagram 970 illustrating an example
embodiment of compiling a set of rules into a decision tree
data structure. A software compiler 972 may receive a rule set
974, a maximum tree depth 976 and a number of subtrees 978.
The software compiler 972 may generate a set of compiled
rules 980.

FIG. 9D illustrates a decision tree data structure 981
including a tree, buckets, and rules. The set of compiled rules
980 may generate a decision tree data structure 981 including
a tree 982, buckets 983a-d, and rules 985. The tree 982 may
include a root node 984, nodes 984a-c, and leaf nodes 986a-b.
Each leatnode 986 of the tree 982 points to a bucket 983. Each
bucket may include one or more bucket entries 987. A leaf
node may include bucket information that may be used to
locate the bucket entries or a bucket list of entries. A bucket
entry may be a pointer to rule (988), or a pointer (989) to a set
of rules (990). The set of rules 990 may be a sequential group
ofrules, or a group of rules scattered throughout the memory,
either organized by a plurality of pointers or by a method used
to recollect the set of rules. The set of rules 990 may also be
called a chunk, or a chunk of rules. A bucket entry that points
to the set of rules 990 may be called a chunk pointer.

Embodiments described herein identify 1) bucket duplica-
tion, ii) rule duplication, iii) node duplication, and iv) priority
duplication. Once a decision tree is built, it may be deter-
mined that some leaf nodes point to buckets containing the
same rules (e.g., duplicate rules) or some may point to buckets
containing a partial duplicate. Embodiments described herein
identify duplication of data and determine how to reuse or
share the duplicated data so that there is only a single instance
of the duplicated data.

Embodiments described herein may remove duplicate
buckets keeping only a single copy. For example, in some
scenarios different leaf nodes may have buckets that contain
the same rules. In such a situation, a single bucket is stored
and all the leaf nodes point to the same bucket. Thus, the
memory required to hold a given tree may be reduced.

In some scenarios, when a parent node is cut to generate
child nodes, some of the child nodes inherit the same rule sets.
This is called node duplication. For example, if a parent node
has 100 rules starting from rule R1 to rule R100 and the parent
node is cut into 64 children, several of the 64 child nodes may
inherit the same rules. Embodiments described herein may
identify the child nodes that contain the same rule set, and
only process one of the nodes having the same rules.

FIG. 10A is a flow diagram that illustrates a method (1080)
identifying the child nodes that contain the same rule set. The
method begins (1082) and compares a subset of rules repre-
sented by child nodes having a same parent node (1084).
Child nodes having the same parent may be called siblings.
Child nodes of the same parent that contain the same rule set
are identified as of duplicate child nodes (1086). One child
node of the set of duplicate child nodes may be selected
(marked) as a unique child node (1088). The other duplicate
child nodes of the set of duplicate child nodes may be linked
to the same subtree as the unique child node (1090). The
unique child node may be used for subsequent building of the
decision tree structure, and the other child nodes of the set of
duplicate child nodes may not be used for subsequent build-
ing of' the decision tree structure (1092) and the method ends
(1094).

As stated above, packet classification may result in the
matching of more than one rule from the rule classification
table. A rule having a highest priority is chosen for classitying
areceived packet. Embodiments described herein may deter-
mine priority of rules for overlapping rules. Rather than stor-
ing a unique priority for each rule in a rule classification table,

10

15

20

25

30

35

40

45

50

55

60

65

16

which is resource intensive and requires a great amount of
storage space, embodiments described herein may categorize
rules based on overlapping criteria. Rules may be categorized
into priority groups and rules within each priority group may
be assigned a unique priority. Rules within priority groups
compete for a match. By assigning unique priority within a
priority group, competing rules are prioritized. However, the
priorities are only unique within the priority group, thus the
same priority values may be shared with rules that do not
compete, the reducing the total number of priority values
needed. Priority duplication saves storage space by providing
a priority value on a per overlapping criteria basis instead of
requiring a unique priority value to be stored for each rule.

FIG. 10B is a flow diagram of a method for priority dupli-
cation (1020). The method begins (1022) and groups rules
based on whether or not the rules compete (1024). Priority
values may be assigned to the plurality of rules. Unique
priority values may be assigned within each group of com-
peting rules (1026). Non-competing rules may be assigned a
priority, the priority assigned to non-competing rules may
overlap with the unique priorities assigned within the groups
of competing rules (1028). The storing decision tree structure
may store the plurality of rules and the priority value assigned
(1030) and the method ends (1032).

FIG. 10C illustrates a graphical example of removing
duplicate buckets of rules in a node of a decision tree (1000).
Asillustrated, a node 1005 has 4 leafnodes 1002,1004, 1006,
and 1008. The node 1005 shows 4 buckets 1010a-d contain-
ing a set of rules, the buckets 1010a-d are pointed to (1012,
1014,1016,1018) by leafnodes 1002,1004, 1006, and 1008,
respectively. Buckets 10104, 1010¢, and 10104 all contain the
same rules. Because the buckets 1010a,1010c¢, and 10104 are
identified to contain the same rules, and the duplicate buckets
1010c¢ and 10104 may be removed from memory, keeping
only unique buckets 1010a and 10105.

FIG. 10D shows node 1005 results in having two buckets
(1010a and 10105) containing rules that need to be stored in
memory. Thus, the leaf nodes 1002, 1004, 1006, and 1008 of
node 1005 only need to point to amemory location containing
the set of rules in buckets 1010a and 10105. For example, leaf
nodes 1002, 1006, and 1008 all point (1013) to bucket 1010a,
and leaf node 1004 points (1011) to bucket 10105.

FIG. 10E is a flow diagram of a method for removing
duplicate buckets of rules in a node of a decision tree (1040).
Method 1040 starts 1042 and identifies duplicate buckets of
rules (1044). If duplicate buckets of rules are not identified,
the method ends (1049). If duplicate buckets of rules are
identified, duplicate buckets are removed (1046) and leaf
nodes are updated to point to unique buckets (1048) and the
method ends (1049).

Bucket duplication is not limited to child nodes having a
same parent (e.g., siblings).

FIG. 10F is a graphical illustration of bucket duplication
according to one embodiment. A portion of a tree (1070) is
shown that includes a parent node 1072 that has child nodes
10784 and 10785 (leaf) and a grandchild node 1074. The child
node 10785 (leaf) and grandchild 1074 (leaf) both point to
buckets 1076 and 1073 respectively. The buckets 1076 and
1073 are duplicate buckets each including a duplicate rule set
(e.g., R1 and R2). The bucket 1073 may be removed by
pointing the child node 10785 to point 1071 to the bucket
1076 pointed to by the grandchild node 1074.

FIG. 10G is a graphical illustration of partial duplicate
buckets of rules in a node of a decision tree. A portion of a tree
(1050) is shown including a parent node 1052 and two chil-
dren (leaves) 1054 and 1056 that point to buckets 10544 and
10564 respectively. Buckets 1054a and 10564 have a partial

US 9,208,438 B2

17

duplicate set of rules R1 and R2. The set of rules in each
bucket may be split into subsets. For example, rules in the
bucket 10544 may be split into a first set 1058a including R1
and R2 and a second set 10585 including R3 and R4. Rules in
the bucket 1056a may be split into a first set 1058¢ including
R1 and R2 and a second set 10584 including R7. The bucket
entries may be replaced with a linked list of chunk pointers, or
pointers to sets of rules. Bucket 1054a' illustrates bucket
10544 having bucket entries replace with a linked list of
chunk pointers CO and C1. Similarly, bucket 10564' illus-
trates bucket 1056a having bucket entries replace with a
linked list of chunk pointers CO and C2. Chunk pointer CO
points to a set of rules including R1 and R2, chunk pointer C1
points to a set of rules including R3 and R4, and chunk pointer
C2 points to a set of pointers including R7.

FIG. 11A is a flow diagram of a method (1150) for partial
duplicate buckets of rules in a node of a decision tree. The
method begins (1152) and identifies a set of partial duplicate
buckets (1154). Partial duplicate buckets each include a
duplicate partial set of rules. The rules in each bucket are
separated into a first and second set of rules. The first set of
rules includes the duplicate partial set of rules and the second
set of rules includes any remaining rules for the bucket
(1156). Links (chunk pointers) are created to the first and
second set of rules and the bucket is linked to the created links
(1158) and the method ends (1160). Each partial duplicate
bucket may be modified to store a linked list of the chunk
pointers. The number of sets shown is an illustration, there
could be multiple sets if there are multiple partial duplicates.

As stated above, rules may have multiple fields. Each field
of'the rulerepresents a field in a header of an incoming packet.
Headers of packets generally include at least two fields, one
field containing a source 1P address field and a second field
containing a destination IP address field. The rules may con-
tain IP wildcards in either or both of the fields representing the
source IP address field and destination IP address field of an
incoming packet.

Embodiments described herein may separate rules into
categories. The categories may be based on a function of the
fields. The rules may be separated into categories in any
suitable manner. The rules may be based on a function of the
fields. For example, the rules may be categorized based on
whether or not they have wildcards in the source and desti-
nation IP address fields. The categories may be as follows: 1)
rules that do not have wildcards in either the source or desti-
nation fields, 2) rules that have wildcards in both the source
and destination fields, 3) rules that have wildcards in the
source field but not in the destination field, and 4) rules that
have wildcards in the destination field but not in the source
field. The fields may be any fields and any number of fields.
For example, three fields may be used for categories, resulting
in 8 categories. Also, instead of complete wild card, the cat-
egory may be based on a field being “large” or “small.” Large
and small may be defined by a ratio of a range of a field value
to its total space.

FIG. 11B illustrates a method 1100 for parsing a classifier
table into categories of rules and building decision trees for
each category. Method 1100 begins at 1105 and then the
method 1100 analyzes a classifier table and parses the table
into categories of rules (1110). For each category of rules, the
method 1100 builds a decision tree (1115), and the method
ends (1125).

FIG. 11C illustrates a method 1130 for selecting a match-
ing rule. Method 1130 begins at 1132. Received packets are
walked by a runtime walker through each decision tree
(1134). Each decision tree returns a matching rule if a match-
ing rule is selected (1136). The priority of each matching rule

15

25

40

45

55

18
is compared (1138) and a matching rule with the highest
priority is selected (1140) and the method ends (1142).

Internet routers classify packets to implement a number of
advanced internet services such as routing, rate limiting,
access control in firewalls, virtual bandwidth allocation,
policy-based routing, service differentiation, load balancing,
traffic shaping, and traffic billing. These services require the
router to classify incoming packets into different flows and
then to perform appropriate actions depending on this classi-
fication.

FIG. 12 is a block diagram illustrating a system 1200 that
includes a router/packet classifier 1210, protected network
1215, and a public network 1205. The public network 1205
may comprise an unsecured wide-area network (WAN), such
as the Internet, a wireless network, a local-area network, or
another type of network. Protected network 1215 may com-
prise a secured computer network such as a local-area net-
work (LAN) in an office or a data center. As illustrated, the
LAN may be a corporate network 1220 including a plurality
of'work stations 1225. The plurality of work stations 1225 are
operatively coupled to database 1230, FTP (file transfer pro-
tocol) server 1235, and intranet server 1250.

In system 1200, the router 1210 is connected to the public
network 1205 and protected network 1215 such that network
traffic flowing from public network 1205 to protected net-
work 1215 flows first to the router 1210. The router 1210 may
be a stand-alone network appliance, a component of another
network appliance (e.g., firewall appliance), a software mod-
ule that executes on a network appliance, or another configu-
ration. The router 1210 may be connected to a rules datacenter
1240. In general, router 1210 inspects network traffic from
public network 1205 and determines what actions to perform
on the network traffic. For example, router 1210 classifies
packets to implement a number of advanced internet services
such as routing, rate limiting, access control in firewalls,
virtual bandwidth allocation, policy-based routing, service
differentiation, load balancing, traffic shaping, and traffic
billing. These services require the router 1210 to classify
incoming packets into different flows and then to perform
appropriate actions depending on this classification.

FIG. 13 is a high-level block diagram of an exemplary
router 1300 that may be used with embodiments described
herein. Router 1300 comprises a memory 1310 coupled to a
processor 1325 via a memory bus 1345 and, a storage device
1330 and a network interface 1340 coupled to the processor
1325 via an input/output (I/0O) bus 1350. It should be noted
that the router 1300 may include other devices, such as key-
boards, display units and the like. The network interface 1340
interfaces the router 1300 with the secured network 1215,
public network 1205, and rules datacenter 1240 and enables
data (e.g., packets) to be transterred between the router and
other nodes in the system 1200. To that end, network interface
1340 comprises conventional circuitry that incorporates sig-
nal, electrical and mechanical characteristics, and inter-
change circuits, needed to interface with the physical media
of system 1200 and protocols running over that media.

The memory 1310 is a non-transitory computer-readable
medium implemented as a RAM comprising RAM devices,
such as DRAM devices and/or flash memory devices.
Memory 1310 contains various software and data structures
used by the processor 1325 including software and data struc-
tures that implement aspects of the embodiments described
herein. Specifically, memory 1310 includes an operating sys-
tem 1315 and packet classification services 1320. The oper-
ating system 1315 functionally organizes the router 1300 by
invoking operations in support of software processes and
services executing on router 1300, such as packet classifica-

US 9,208,438 B2

19

tion services 1320. Packet classification services 1320, as will
be described below, comprises computer-executable instruc-
tions to compile a decision tree data structure from a given set
of'rules and walk incoming data packets through the compiled
decision tree data structure.

Storage device 1330 is a conventional storage device (e.g.,
disk) that comprises rules database (DB) 1335 which is a data
structure that is configured to hold various information used
to compile a decision tree data structure from a given set of
rules. Information may include rules having a plurality of
fields corresponding to headers of incoming data packets.

FIG. 14 is a diagram of another example embodiment of a
decision tree data structure including a tree, buckets, and rules
(1481). Embodiments disclosed herein may identify duplica-
tion of data and determine how to reuse or share the duplicate
data such that there is only a single instance of the duplicated
data in the decision tree data structure 1481. Embodiments
disclosed herein reduce a number of operations needed to
identify duplication in the decision tree structure 1481. By
reducing the number of operations needed for identifying
duplication, speed and efficiency of a compiler building the
decision tree data structure may be improved. In addition, by
reusing or sharing the duplicate data, the decision tree struc-
ture 1481 may have a reduced storage requirement, thereby
conserving resources, such as memory, used for storing the
decision tree structure.

The decision tree structure 1481 may include a plurality of
nodes representing a plurality of rules 1485 used for packet
classification. For example, the decision trec 1482 may
include a root node 1484, nodes 1484a-d, and leaf nodes
1486a-d. Each node may represent a subset of a plurality of
the rules 1485. Each node may have a leaf node type or a
non-leaf node type. Each node having the leaf node type may
be referred to herein as a leaf node or a leaf.

Eachnodehaving the non-leafnode type may be cut on one
ormore selected bits of a selected one or more fields of at least
one field of a rule, creating one or more child nodes. For
example, the root node 1484 may be cut, creating child nodes
14844 and 14845. The one or more child nodes created may
have the non-leaf node type or the leaf node type. Each node
cut may also be referred to herein as a parent node of the one
or more child nodes created. For example, a parent node of
child nodes 14844 and 14845 may be the root node 1484. The
parent of node of child nodes 14864, 14865, and 14844 may
be 1484c¢. Child nodes created may represent one or more
rules of the parent node. Child nodes having a same parent
may be referred to herein as siblings. For example, nodes
14864, 14865, and 14844 are siblings as each has the same
parent node (e.g., node 1484c¢). Nodes 1484a and 14845 are
siblings as each has the same parent node (e.g., node 1484).

Each node having the leaf node type may be linked to a
bucket. The bucket may represent the subset of the plurality of
rules represented by the leaf node. For example, each leaf
node 1486a-d of the tree 1482 points to a bucket, such as
1483 a-d. Each bucket may include one or more bucket entries
1487. A leaf node may include bucket information that may
be used to locate the bucket entries or a bucket list of entries.
A bucket entry may be a pointer to rule (1488), or a pointer
(1489) to a set of rules (1490). According to embodiments
disclosed herein, a compiler for building the decision tree
structure 1481 may identify bucket duplication or node dupli-
cation in the decision tree structure 1481.

By identifying bucket duplication, embodiments disclosed
herein may link one or more leaf nodes to a same bucket, thus
reducing a number of buckets needed in the decision tree
structure. If a bucket needs to be created for a leaf, embodi-
ments disclosed herein a check may be made ifa bucket needs

10

15

20

25

30

35

40

45

50

55

60

65

20

to be created for a leaf. The check may be made against an
existing set of unique buckets to avoid duplicates that occupy
space in memory. Operations for checking for bucket dupli-
cation may be improved according to embodiments disclosed
herein by using a hash based on a number of rules in a bucket
and the rule numbers within the bucket, thus, avoiding a linear
check that may require more operations to perform.

By identifying node duplication (e.g., node duplication),
embodiments disclosed herein may link a node to a subtree of
another node, such as a subtree 1412, instead of creating a
duplicate instance of the subtree 1412 in the decision tree
1482. Embodiments disclosed herein hash a sub-tree using
hash computations (e.g., MDS5, SHA-1, SHAZ2 etc.) enabling
a duplicate check to be performed with less operations as
compared to comparing sub-trees on a node-by-node basis.

As leaf nodes are created, the leaf nodes are linked to
buckets. To prevent bucket duplication, embodiments dis-
closed herein may determine whether or not an existing
unique bucket may be linked to the leaf node created instead
of allocating a new bucket for the leaf node that may be a
duplicate of an existing bucket. Embodiments disclosed
herein may identify whether or not an existing unique bucket
is a duplicate of a bucket in an efficient manner, with minimal
operations needed to identify the bucket duplication.
Embodiments disclosed herein may employ normalization
and hash computation to reduce a number of operations
needed for identifying both bucket and node duplication.

According to embodiments disclosed herein, the buckets
1483 a-d may be unique buckets each associated with a unique
hash value. Hash values may be based on a hash computation,
such as MD5, SHA-1, SHA-2, or any other suitable hash
computation.

A hash computation for bucket duplication may include
generating a hash value from a total number of rules in a
bucket and rule numbers of the rules in the bucket. Rule
numbers may be an index, pointer, or other suitable indirec-
tion for identifying the rule in the plurality of rules 1485, or a
normalized value of the rule.

A hash computation for node duplication may include gen-
erating a hash value from a total number of rules of a node,
rule numbers of the rules of the node, and values of the rules
normalized to a region of the node.

A hash computation is deterministic such that if two hash
values generated from a same hash function are different, the
two values input to the hash computation may be deemed
different. As such, a hash computation does not generate false
negatives. However, a hash computation may generate false
positives (also referred to herein as a hash collision, or a
collision). For example, two different values input to the same
hash function may generate a same hash value. Embodiments
disclosed herein enable validation to discern whether or not
multiple input values generation a same hash value are indeed
different, to validate whether or not bucket or node duplica-
tion may be present.

Validation may include a linear comparison of the content
of'the bucket or node identified as a possible duplicate in order
to determine whether or not a false positive exists. For
example, bucket duplication may be validated by a linear
comparison of the rules in the buckets. Node duplication may
be validated by a linear comparison of each child included in
sibling lists of multiple nodes identified as possible duplica-
tion. Embodiments disclosed herein may traverse lists, such
as bucket lists of rules or sibling lists of nodes, that may be
link lists to the content (e.g., rules, siblings) being compared
in the linear comparison. If a linear comparison indicates that
the elements compared match, a determination of bucket or
node duplication may be made.

US 9,208,438 B2

21

According to one embodiment, hash values 1410 associ-
ated with the unique buckets 1483a-d may be stored in the
decision tree structure 1481. The hash values 1410 may be
stored in a binary tree, linear list, or in any other suitable
manner. According to another embodiment, the unique buck-
ets 1483a-d may be stored in a bucket database 1420. The
hash values 1410 may enable duplicate buckets to be identi-
fied with speed and efficiency.

Embodiments disclosed herein may check if a unique
bucket exists before allocating a bucket for the leaf node by
walking a list of hash values 1410 associated with the unique
buckets 1483a-d to identify bucket duplication. Bucket dupli-
cation may be identified by computing a hash value for a leaf
node and checking whether or not a unique bucket exists
having the hash value computed. The hash value computed
may based on rules of a leaf node normalized to the region
covered by the leaf node.

Rules may be normalized against nodes so that when a rule
occupies the same portion of two sibling nodes, it may gen-
erate the same hash value for both siblings. For node dupli-
cation identification, normalization may be done for each
field of each rule, based on a field type. A field type may be a
non-mask field or a mask field. For a non-mask field type,
nodes and rules are represented as ranges. For such fields, a
rule may be intersected with the node’s range, and the node’s
lower limit may be subtracted from both the rule’s lower and
upper limits to compute an intersection region. The intersec-
tion region may be used for generating the hash value.

For a mask field type, both nodes and rules are represented
as descriptions. Descriptions may be bitstrings, such as a
six-bit string ‘110xx0,” that includes ones, zeros, and don’t-
care bits. A bitstring may include ones, zeros, and don’t care
bits, of any combination thereof, to define all possible values
for the node or the rule. A bitstring may be any number of bits.
In the example, the six-bit string specifies that two of the bits
must be 1s, two of the bits must be Os, and two of the bits are
don’t care bits that may be enumerated as ones and zeros to
determine all possible values. For example the bitstring
‘110xx0> may be enumerated as having values 110000,
110010, 110100, and 110110.

A rule may be normalized to a node by intersecting the rule
description with the node description. Intersecting the leaf
node’s description for the field with the rule’s description for
the field on a bit-by-bit basis may include applying a set of
intersection rules. The set of intersection rules may include a
don’t-care bit intersected with another don’t-care bit yields
the don’t-care bit, a value intersected with an equal value
yields the value, the don’t-care bit intersected with the value
yields the value, and the value intersected with an unequal
value yields an empty intersection. The intersected descrip-
tion may be used for the hash computation.

By employing a hash based bucket duplication determina-
tion, a number of operations needed to check for bucket
duplication may be on the order O(log N), where N is the
number of unique buckets (e.g., the number of hash values in
the list).

In contrast, alternative bucket duplication methods may
require more operations to identify bucket or node duplica-
tion because such alternatives may perform a linear compari-
son of the rules of the leaf node to the rules of all buckets.
Such an alternative may result in X*N*Y operations, where N
represents the number of buckets being searched, X repre-
sents an average number of rules for the N buckets, and Y
represents a number of rules of the leaf node.

FIG. 15A shows an example embodiment of a graph 1540
of a rule normalized to a region. A child node, such as a leaf
node, may have a region 1542 bounded in the search space

10

15

20

25

30

35

40

45

50

55

60

65

22

1548 by cutlines 1550a-d of a corresponding parent node. In
the example embodiment, the leaf node may include R1 1544
that has a range of 12-16 in the X direction and 8-10 in the Y
direction. A normalized R1 1544 is shown as R1' 1546 having
a range of 4-8 in the X direction and 0-2 in the Y direction.

FIG. 15B shows an example embodiment of a graph 1560
of a rule normalized to regions of nodes. The graph 1560
shows a search space 1562 and a rule 1564 that is present is in
child nodes 1566a-d created from cutlines 1570a-c. The rule
1564 may be normalized according to boundaries of the child
nodes 1566a-d. For example, the rule 1564 normalized
against the child node 15664 is shown as the hashed region
1568 and the rule 1564 normalized against the child node
15664 is shown by the speckled region 1572.

FIG. 15D is block diagram of an example embodiment of a
root node cut into 8 children (1500). The root node 1502
represents a plurality of rules of a search space 1506 used for
packet classification (e.g., an entire set of rules that may be
used for key matching). The search space 1506 of the example
embodiment includes rules R1, R2, and R3. The root node
1502 has been cut into 8 child nodes 15044-%. The child nodes
1504g and 1504/ have no rules and the child nodes 15044a-f
are non-leaf nodes linked to subtrees 1508a-f. Although sub-
trees 1508b-¢ each include rules R1, R2, and R3, only sub-
trees 1508¢ and 15084 are duplicates as described below.

FIG. 15D is block diagram of an example embodiment of a
root node cut into 8 children (1500). The root node 1502
represents a plurality of rules 1506 of a search space used for
packet classification (e.g., an entire set of rules that may be
used for key matching). The search space 1506 of the example
embodiment includes rules R1, R2, and R3. The root node
1502 has been cut into 8 child nodes 15044-%. The child nodes
1504g and 1504/ have no rules and the child nodes 15044a-f
are non-leaf nodes linked to subtrees 1508a-f. Although sub-
trees 1508b-¢ each include rules R1, R2, and R3, only sub-
trees 1508¢ and 15084 are duplicates as described below.

FIG. 16 is a flow diagram of an example embodiment of a
method for building a decision tree structure (1600). The
method may begin (1602) and may build the decision tree
structure representing a plurality of rules using a classifier
table having the plurality of rules (1604). The plurality of
rules may have at least one field. The method may include a
plurality of nodes in the decision tree structure, each node
may represent a subset of the plurality of rules. Each node
may have a leaf node type or a non-leaf node type. The
method may link each node having the leaf node type to a
bucket (1606). Each node having the leaf node type may be a
leafnode. The bucket may represent the subset of the plurality
of rules represented by the leaf node. The method may cut
each node having the non-leaf node type on one or more
selected bits of a selected one or more fields of the at least one
field creating one or more child nodes (1608). The one or
more child node created may have the non-leaf node type or
the leaf node type. Each node cut may be a parent node of the
one or more child nodes created. The one or more child nodes
created may represent one or more rules of the parent node.
The method may identify duplication in the decision tree
structure (1610). The method may modify the decision tree
structure based on the identified duplication (1612). The
method may store the modified decision tree structure (1614)
and the method thereafter ends (1616) in the example
embodiment.

FIG. 17 is an example embodiment of a method for iden-
tifying bucket duplication (1700) for a leaf node. The method
may begin (1702) and compute a hash value based on each
rule and a total number of rules represented by the leaf node
(1706). The method may compare the hash value computed to

US 9,208,438 B2

23

hash values associated with unique buckets (1708). The
method may check if the comparison yields a match (1710). If
no, the method may identify no bucket duplication (1712) and
the method thereafter ends (1714) in the example embodi-
ment. If the check at (1710) is yes, the method may validate
the comparison (1716) to provide either a confirmed or a
non-confirmed result of the comparison (1718). If the con-
firmed result is provided, the method may identity bucket
duplication (1720) and the method thereafter ends (1714) in
the example embodiment. If the non-confirmed result is pro-
vided, the method may identify no bucket duplication (1712)
and the method thereafter ends (1714) in the example
embodiment.

FIG. 18 is a flow diagram of an example embodiment for
modifying the decision tree structure based on the identified
duplication (1800). The method may begin (1802) and check
if bucket duplication is identified (1804). If yes, the method
may link the leaf node to a unique bucket based on bucket
duplication being identified (1806) and the method thereafter
ends (1814) in the example embodiment. If no, the method
may create a new bucket representing the subset of the plu-
rality of rules represented by the leafnode (1808), link the leaf
node to the new bucket created (1810), and associate the hash
value computed for the leaf node with the new bucket created
(1812) and the method thereafter ends (1814) in the example
embodiment.

FIG. 19 is a flow diagram of an example embodiment for
validating a comparison (1900). The method may begin
(1902) and performing a linear comparison between each rule
of the leaf node and rules of a given bucket (1904). The
method may check ifthe linear comparison is a match (1906).
If yes, the method may provide the confirmed result (1908)
and the method thereafter ends (1910) in the example
embodiment. If no, the method may provide the non-con-
firmed result (1912) and the method thereafter ends (1910) in
the example embodiment.

FIG. 20 is flow diagram of an embodiment for normalizing
a field (2000). The method may start (2002) and check if field
type for the field is a non-mask field type (2004). A non-mask
field may be defined as a field for which all possible values are
contiguous and may be represented by one range. For
example, a non-mask field, such a binary 101x field, may have
a contiguous range of 1010b to 1011b to capture all possible
values. A mask-field may be defined as a field for which all
possible values may not be contiguous and cannot be repre-
sented by a single range and hence needs an arbitrary mask to
represent it. For example, a mask field, such as 1x1x in binary,
may have 1010b, 1011b, 1110b, and 1111b for all possible
values, and, thus, need two contiguous ranges to capture all
possible values. If yes, the method may normalize the field by
intersecting the field with the leaf node’s range for the field
(2006) and subtract a lower limit of the leaf node’s range for
the field from the lower and upper limits of the intersection to
compute a normalized region (2008). The method may com-
pute the hash value based on the normalized region computed
(2010) and the method thereafter ends (2012) in the example
embodiment. If at (2004) the check for the field type being the
non-mask type is no, the field type is a mask field type, and the
method may normalize by intersecting the leaf node’s
description for the field with the rule’s description for the field
on a bit-by-bit basis to compute a normalized region (2014)
and the hash value computed may be based on the normalized
region computed (2010) and the method thereafter ends
(2012) in the example embodiment.

FIG. 21 is flow diagram of an embodiment of a method for
identifying node duplication for a level of the decision tree
(2100). The method may begin (2102) and normalizing each

20

40

45

55

24

rule of the one or more rules represented by child nodes
having a same parent node to a respective range for a respec-
tive child node (2104). Child nodes having the same parent
node may be siblings. Normalizing each rule of the one or
more rules represented by the sibling may include for each
rule, normalizing each field of the at least one field of the rule
against the sibling’s range for the field. Normalizing each
field of the at least one field of the rule against the sibling’s
range for the field may be based on a field type of the field.

Ifthe field type is a non-mask field type, normalization may
includes intersecting the field with the sibling’s range for the
field and subtracting a lower limit of the sibling’s range for
the field from the lower and upper limits of the intersection to
compute a normalized region. The hash value computed may
be based on the normalized region computed. If the field type
is a mask field type, normalization may include intersecting
the sibling’s description for the field with the rule’s descrip-
tion for the field on a bit-by-bit basis to compute a normalized
region. The hash value computed may be based on the nor-
malized region computed.

The sibling’s description and the rule’s description for the
field may be bitstrings representing the possible values for the
field by designating each bit of a respective bitstring as a zero,
one, or don’t care value. A don’t care value may be enumer-
ated as a zero and a one for purposes of determining the
possible values. Intersecting the sibling’s description for the
field with the rule’s description for the field on a bit-by-bit
basis may include applying a set of intersection rules. The set
of intersection rules may include: a don’t-care bit intersected
with another don’t-care bit yields the don’t-care bit, a value
intersected with an equal value yields the value, the don’t-
care bit intersected with the value yields the value, and the
value intersected with an unequal value yields an empty inter-
section.

The method may compute a hash value for each sibling
from the normalized one or more rules of the sibling and a
total number of the one or more rules represented by the
sibling (2106). The method may compare the computed hash
values for the siblings (2108). The method may check if the
computed hash values are equal (2110). If no, the method may
identify no node duplication (2112) and the method thereafter
ends (2120) in the example embodiment. If yes, the method
may validate the comparison to provide either a confirmed or
a non-confirmed result of the comparison (2114).

Validating the comparison may include performing a linear
comparison between each of the normalized one or more
rules represented by the sibling and normalized rules repre-
sented by another sibling having the same computed hash
value. The method may provide the confirmed result based on
an exact match of the performed linear comparison and may
provide the non-confirmed result based on a non-exact match
of the performed linear comparison.

The method may check if the confirmed result is provided
(2116). If yes, the method may identify a duplicate node
(2118) and the method thereafter ends (2120) in the example
embodiment. If no, the method may identify no node dupli-
cation (2112) and the method thereafter ends (2120) in the
example embodiment.

FIG. 22 is a flow diagram of an example embodiment of a
method for modifying the decision tree structure based on the
identified duplication (2200). The method may begin (2202)
and check if node duplication is identified (2204). If yes, the
method may link a sibling to a same subtree linked to the
identified duplicate node (2206) and the method thereafter
ends (2212) in the example embodiment. If no, the method

US 9,208,438 B2

25
may create a new subtree (2208) and link the sibling to the
new subtree (2210) and the method thereafter ends (2212) in
the example embodiment.

It should be understood that the block, flow, network dia-
grams may include more or fewer elements, be arranged
differently, or be represented differently. It should be under-
stood that implementation may dictate the block, flow, net-
work diagrams and the number of block, flow, network dia-
grams illustrating the execution of embodiments described
herein.

It should be understood that elements of the block, flow,
network diagrams described above may be implemented in
software, hardware, or firmware. In addition, the elements of
the block, flow, network diagrams described above may be
combined or divided in any manner in software, hardware, or
firmware. If implemented in software, the software may be
written in any language that can support the embodiments
disclosed herein. The software may be stored on any form of
computer readable medium, such as random access memory
(RAM), read only memory (ROM), compact disk read only
memory (CD-ROM), and other non-transitory forms of com-
puter readable medium. In operation, a general purpose or
application specific processor loads and executes the software
in a manner well understood in the art.

While this invention has been particularly shown and
described with references to example embodiments thereof, it
will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the scope of the invention encompassed by the
appended claims.

What is claimed is:

1. A method comprising:

building a decision tree structure representing a plurality of
rules using a classifier table having the plurality of rules,
the plurality of rules having at least one field;

including a plurality of nodes in the decision tree structure,
each node representing a subset of the plurality of rules,
each node having a leaf node type or a non-leaf node
type;

linking each node having the leaf node type to a bucket,
each node having the leaf node type being a leaf node,
the bucket representing the subset of the plurality of
rules represented by the leaf node;

cutting each node having the non-leaf node type on one or
more selected bits of a selected one or more fields of the
atleast one field creating one or more child nodes having
the non-leaf node type or the leaf node type, each node
cut being a parent node of the one or more child nodes
created, the one or more child nodes created represent-
ing one or more rules of the parent node;

identifying duplication in the decision tree structure;

modifying the decision tree structure based on the identi-
fied duplication; and

storing the modified decision tree structure.

2. The method of claim 1 wherein identifying duplication

includes, for each leaf node:

computing a hash value based on each rule and a total
number of rules represented by the leaf node;

comparing the hash value computed to hash values associ-
ated with unique buckets and identifying no bucket
duplicationifnone of the hash values associated with the
unique buckets match the hash value computed;

validating the comparison if a given hash value associated
with a given bucket of the unique buckets matches the
hash value computed to provide either a confirmed or a
non-confirmed result of the comparison; and

5

20

25

30

35

40

45

50

60

26

identifying bucket duplication based on the confirmed
result being provided and identifying no bucket dupli-
cation based on the non-confirmed result being pro-
vided.

3. The method of claim 2 wherein moditying the decision
tree structure based on the identified duplication includes:

linking the leaf node to the given bucket based on bucket

duplication being identified; and

creating a new bucket representing the subset of the plu-

rality of rules represented by the leaf node, linking the
leaf node to the new bucket created, and associating the
hash value computed with the new bucket created based
on no bucket duplication being identified.

4. The method of claim 2 wherein validating the compari-
son includes:

performing a linear comparison between each rule of the

leaf node and rules of the given bucket; and

providing the confirmed result based on an exact match of

the performed linear comparison and providing the non-
confirmed result based on a non-exact match of the
performed linear comparison.

5. The method of claim 2 further including maintaining a
list of all unique buckets linked to leaf nodes, wherein unique
buckets are allocated buckets associated with unique hash
values.

6. The method of claim 5 further including storing the
unique buckets in a bucket database.

7. The method of claim 5 further including storing the
unique hash values in the decision tree structure.

8. The method of claim 2 wherein normalizing each field of
the at least one field of the rule against the leaf node’s range
for the field is based on a field type of the field.

9. The method of claim 8 wherein if the field type is a
non-mask field type, normalization includes:

intersecting the field with the leaf node’s range for the field

and subtracting a lower limit of the leafnode’s range for
the field from the lower and upper limits of the intersec-
tion to compute a normalized region, wherein the hash
value computed is based on the normalized region com-
puted.

10. The method of claim 8 wherein if the field type is a
mask field type, normalization includes intersecting the leaf
node’s description for the field with the rule’s description for
the field on a bit-by-bit basis to compute a normalized region,
wherein the hash value computed is based on the normalized
region computed.

11. The method of claim 10 wherein the leaf node’s
description and the rule’s description for the field are bit-
strings representing the possible values for the field by des-
ignating each bit of a respective bitstring as a zero, one, or
don’t care value and further wherein a don’t care value may be
enumerated as a zero and a one for purposes of determining
the possible values.

12. The method of claim 11 wherein intersecting the leaf
node’s description for the field with the rule’s description for
the field on a bit-by-bit basis includes applying a set of inter-
section rules including: a don’t-care bit intersected with
another don’t-care bit yields the don’t-care bit, a value inter-
sected with an equal value yields the value, the don’t-care bit
intersected with the value yields the value, and the value
intersected with an unequal value yields an empty intersec-
tion.

13. The method of claim 1 wherein identifying duplication
includes:

for each level of the decision tree, normalizing each rule of

the one or more rules represented by child nodes having

US 9,208,438 B2

27

a same parent node to a respective rule range for a
respective child node, child nodes having the same par-
ent node being siblings;
computing a hash value for each sibling from the normal-
ized one or more rules of the sibling and a total number
of the one or more rules represented by the sibling;

comparing the computed hash values for the siblings and
identifying no node duplication based on no computed
hash values being compared equal;

validating the comparison based on a computed hash value

for a sibling being compared equal to a computed hash
value for another sibling to provide either a confirmed or
a non-confirmed result of the comparison; and
identifying a duplicate node based on the confirmed result
being provided and identifying no node duplication
based on the non-confirmed result being provided.

14. The method of claim 13 wherein modifying the deci-
sion tree structure based on the identified duplication
includes:

linking the sibling to a same subtree linked to the identified

duplicate node based on the duplicate node being iden-
tified; and

creating a new subtree and linking the sibling to the new

subtree based on no node duplication being identified.

15. The method of claim 13 wherein validating the com-
parison includes:

performing a linear comparison between each of the nor-

malized one or more rules represented by the sibling and
normalized rules represented by another sibling having
the computed hash value; and

providing the confirmed result based on an exact match of

the performed linear comparison and providing the non-
confirmed result based on a non-exact match of the
performed linear comparison.

16. The method of claim 13 wherein normalizing each rule
of the one or more rules represented by the sibling includes
for each rule, normalizing each field of the at least one field of
the rule against the sibling’s range for the field.

17. The method of claim 16 wherein normalizing each field
of'the at least one field of the rule against the sibling’s range
for the field is based on a field type of the field.

18. The method of claim 17 wherein if the field type is a
non-mask field type, normalization includes:

intersecting the field with the sibling’s range for the field

and subtracting a lower limit of the sibling’s range for
the field from the lower and upper limits of the intersec-
tion to compute a normalized region, wherein the hash
value computed is based on the normalized region com-
puted.

19. The method of claim 17 wherein if the field type is a
mask field type, normalization includes intersecting the sib-
ling’s description for the field with the rule’s description for
the field on a bit-by-bit basis to compute a normalized region,
wherein the hash value computed is based on the normalized
region computed.

20. The method of claim 19 wherein the sibling’s descrip-
tion and the rule’s description for the field are bitstrings
representing the possible values for the field by designating
each bit of a respective bitstring as a zero, one, or don’t care
value and further wherein a don’t care value may be enumer-
ated as a zero and a one for purposes of determining the
possible values.

21. The method of claim 20 wherein intersecting the sib-
ling’s description for the field with the rule’s description for
the field on a bit-by-bit basis includes applying a set of inter-
section rules including: a don’t-care bit intersected with
another don’t-care bit yields the don’t-care bit, a value inter-

5

30

35

40

45

50

60

65

28

sected with an equal value yields the value, the don’t-care bit
intersected with the value yields the value, and the value
intersected with an unequal value yields an empty intersec-
tion.

22. An apparatus comprising:

a memory;

a processor coupled to the memory, the processor config-

ured to:

build a decision tree structure representing a plurality of

rules using a classifier table having the plurality of rules,
the plurality of rules having at least one field;

include a plurality of nodes in the decision tree structure,

each node representing a subset of the plurality of rules,
each node having a leaf node type or a non-leaf node
type;

link each node having the leaf node type to a bucket, each

node having the leaf node type being a leaf node, the
bucket representing the subset of the plurality of rules
represented by the leaf node;

cut each node having the non-leaf node type on one or more

selected bits of a selected one or more fields of the at
least one field creating one or more child nodes having
the non-leaf node type or the leaf node type, each node
cut being a parent node of the one or more child nodes
created, the one or more child nodes created represent-
ing one or more rules of the parent node;

identify duplication in the decision tree structure;

modify the decision tree structure based on the identified

duplication; and

store the modified decision tree structure.

23. The apparatus of claim 22 wherein to identifying dupli-
cation the processor is further configured to, for each leaf
node:

compute a hash value based on each rule and a total number

of rules represented by the leaf node;

compare the hash value computed to hash values associ-

ated with unique buckets and identifying no bucket
duplication if none of the hash values associated with the
unique buckets match the hash value computed;
validate the comparison if a given hash value associated
with a given bucket of the unique buckets matches the
hash value computed to provide either a confirmed or a
non-confirmed result of the comparison; and
identify bucket duplication based on the confirmed result
being provided and identifying no bucket duplication
based on the non-confirmed result being provided.

24. The apparatus of claim 23 wherein to modify the deci-
sion tree structure based on the identified duplication the
processor is further configured to:

link the leaf node to the given bucket based on bucket

duplication being identified; and

create a new bucket representing the subset of the plurality

of rules represented by the leaf node, linking the leaf
node to the new bucket created, and associate the hash
value computed with the new bucket created based on no
bucket duplication being identified.

25. The apparatus of claim 23 wherein to validate the
comparison the processor is further configured to:

perform a linear comparison between each rule of the leaf

node and rules of the given bucket; and

provide the confirmed result based on an exact match of the

performed linear comparison and providing the non-
confirmed result based on a non-exact match of the
performed linear comparison.

26. The apparatus of claim 23 wherein the processor is
further configured to maintain a list of all unique buckets

US 9,208,438 B2

29

linked to leaf nodes, wherein unique buckets are allocated
buckets associated with unique hash values.

27. The apparatus of claim 26 wherein the processor is
further configured to store the unique buckets in a bucket
database.

28. The apparatus of claim 26 wherein the processor is
further configured to store the unique hash values in the
decision tree structure.

29. The apparatus of claim 23 wherein the processor is
further configured to normalize each field of the at least one
field of the rule against the leaf node’s range for the field is
based on a field type of the field.

30. The apparatus of claim 29 wherein if the field type is a
non-mask field type, the processor is further configured to:

intersect the field with the leaf node’s range for the field

and subtract a lower limit of the leaf node’s range for the
field from the lower and upper limits of the intersection
to compute a normalized region, wherein the hash value
computed is based on the normalized region computed.

31. The apparatus of claim 29 wherein if the field type is a
mask field type, the processor is further configured to inter-
sect the leaf node’s description for the field with the rule’s
description for the field on a bit-by-bit basis to compute a
normalized region, wherein the hash value computed is based
on the normalized region computed.

32. The apparatus of claim 31 wherein the leaf node’s
description and the rule’s description for the field are bit-
strings representing the possible values for the field by des-
ignating each bit of a respective bitstring as a zero, one, or
don’t care value and further wherein a don’t care value may be
enumerated as a zero and a one for purposes of determining
the possible values.

33. The apparatus of claim 31 wherein to intersect the leaf
node’s description for the field with the rule’s description for
the field on a bit-by-bit basis the processor is further config-
ured to apply a set of intersection rules including: a don’t-care
bit intersected with another don’t-care bit yields the don’t-
care bit, a value intersected with an equal value yields the
value, the don’t-care bit intersected with the value yields the
value, and the value intersected with an unequal value yields
an empty intersection.

34. The apparatus of claim 22 wherein to identify duplica-
tion the processor is further configured:

for each level of the decision tree, normalize each rule of

the one or more rules represented by child nodes having
a same parent node to a respective rule range for a
respective child node, child nodes having the same par-
ent node being siblings;

compute a hash value for each sibling from the normalized

one or more rules of the sibling and a total number of the
one or more rules represented by the sibling;

compare the computed hash values for the siblings and

identifying no node duplication based on no computed
hash values being compared equal;
validate the comparison based on a computed hash value
for a sibling being compared equal to a computed hash
value for another sibling to provide either a confirmed or
a non-confirmed result of the comparison; and

identify a duplicate node based on the confirmed result
being provided and identifying no node duplication
based on the non-confirmed result being provided.

35. The apparatus of claim 34 wherein to modifying the
decision tree structure based on the identified duplication the
processor is further configured:

link the sibling to a same subtree linked to the identified

duplicate node based on the duplicate node being iden-
tified; and

5

10

25

30

35

40

45

55

30

create a new subtree and linking the sibling to the new

subtree based on no node duplication being identified.

36. The apparatus of claim 34 wherein to validate the
comparison the processor is further configured to:

perform a linear comparison between each of the normal-

ized one or more rules represented by the sibling and
normalized rules represented by another sibling having
the computed hash value; and

provide the confirmed result based on an exact match of the

performed linear comparison and providing the non-
confirmed result based on a non-exact match of the
performed linear comparison.

37. The apparatus of claim 34 wherein to normalize each
rule of the one or more rules represented by the sibling the
processor is further configured to, for each rule, normalize
each field of the at least one field of the rule against the
sibling’s range for the field.

38. The apparatus of claim 37 wherein the processor is
further configured to normalize each field of the at least one
field of the rule against the sibling’s range for the field based
on a field type of the field.

39. The apparatus of claim 38 wherein if the field type is a
non-mask field type, the processor is further configured to:

intersect the field with the sibling’s range for the field and

subtract a lower limit of the sibling’s range for the field
from the lower and upper limits of the intersection to
compute a normalized region, wherein the hash value
computed is based on the normalized region computed.

40. The apparatus of claim 38 wherein if the field type is a
mask field type, to normalize the processor is further config-
ured to intersect the sibling’s description for the field with the
rule’s description for the field on a bit-by-bit basis to compute
a normalized region, wherein the hash value computed is
based on the normalized region computed.

41. The apparatus of claim 40 wherein the sibling’s
description and the rule’s description for the field are bit-
strings representing the possible values for the field by des-
ignating each bit of a respective bitstring as a zero, one, or
don’t care value and further wherein a don’t care value may be
enumerated as a zero and a one for purposes of determining
the possible values.

42. The apparatus of claim 40 wherein intersecting the
sibling’s description for the field with the rule’s description
for the field on a bit-by-bit basis includes applying a set of
intersection rules including: a don’t-care bit intersected with
another don’t-care bit yields the don’t-care bit, a value inter-
sected with an equal value yields the value, the don’t-care bit
intersected with the value yields the value, and the value
intersected with an unequal value yields an empty intersec-
tion.

43. A non-transitory computer-readable medium having
encoded thereon a sequence of instructions which, when
loaded and executed by a processor, causes the processor to:

build a decision tree structure representing a plurality of

rules using a classifier table having the plurality of rules,
the plurality of rules having at least one field;

include a plurality of nodes in the decision tree structure,

each node representing a subset of the plurality of rules,
each node having a leaf node type or a non-leaf node
type;

link each node having the leaf node type to a bucket, each

node having the leaf node type being a leaf node, the
bucket representing the subset of the plurality of rules
represented by the leaf node;

cut each node having the non-leaf node type on one or more

selected bits of a selected one or more fields of the at
least one field creating one or more child nodes having

US 9,208,438 B2

31

the non-leaf node type or the leaf node type, each node
cut being a parent node of the one or more child nodes
created, the one or more child nodes created represent-
ing one or more rules of the parent node;

identify duplication in the decision tree structure;

modify the decision tree structure based on the identified

duplication; and

store the modified decision tree structure.

44. The non-transitory computer-readable medium of
claim 43 wherein to identifying duplication the sequence of
instructions further causes the processor to, for each leaf
node:

compute a hash value based on each rule and a total number

of rules represented by the leaf node;

compare the hash value computed to hash values associ-

ated with unique buckets and identifying no bucket
duplicationifnone of the hash values associated with the
unique buckets match the hash value computed;
validate the comparison if a given hash value associated
with a given bucket of the unique buckets matches the
hash value computed to provide either a confirmed or a
non-confirmed result of the comparison; and
identify bucket duplication based on the confirmed result
being provided and identifying no bucket duplication
based on the non-confirmed result being provided.

45. The non-transitory computer-readable medium of
claim 44 wherein to modify the decision tree structure based
on the identified duplication the sequence of instructions
further causes the processor to:

link the leaf node to the given bucket based on bucket

duplication being identified; and

create a new bucket representing the subset of the plurality

of rules represented by the leaf node, linking the leaf
node to the new bucket created, and associate the hash
value computed with the new bucket created based on no
bucket duplication being identified.

46. The non-transitory computer-readable medium of
claim 44 wherein to validate the comparison the sequence of
instructions further causes the processor to:

perform a linear comparison between each rule of the leaf

node and rules of the given bucket; and

provide the confirmed result based on an exact match of the

performed linear comparison and providing the non-
confirmed result based on a non-exact match of the
performed linear comparison.

47. The non-transitory computer-readable medium of
claim 44 wherein the sequence of instructions further causes
the processor to maintain a list of all unique buckets linked to
leaf nodes, wherein unique buckets are allocated buckets
associated with unique hash values.

48. The non-transitory computer-readable medium of
claim 47 wherein the sequence of instructions further causes
the processor to store the unique buckets in a bucket database.

49. The non-transitory computer-readable medium of
claim 47 wherein the sequence of instructions further causes
the processor to store the unique hash values in the decision
tree structure.

50. The non-transitory computer-readable medium of
claim 44 wherein the sequence of instructions further causes
the processor to normalize each field of the at least one field
of the rule against the leaf node’s range for the field is based
on a field type of the field.

51. The non-transitory computer-readable medium of
claim 50 wherein if the field type is a non-mask field type, the
sequence of instructions further causes the processor to:

intersect the field with the leaf node’s range for the field

and subtract a lower limit of the leaf node’s range for the

10

15

20

25

30

35

40

45

50

55

60

65

32

field from the lower and upper limits of the intersection
to compute a normalized region, wherein the hash value
computed is based on the normalized region computed.

52. The non-transitory computer-readable medium of
claim 50 wherein if the field type is a mask field type, the
sequence of instructions further causes the processor to inter-
sect the leaf node’s description for the field with the rule’s
description for the field on a bit-by-bit basis to compute a
normalized region, wherein the hash value computed is based
on the normalized region computed.

53. The non-transitory computer-readable medium of
claim 52 wherein the leaf node’s description and the rule’s
description for the field are bitstrings representing the pos-
sible values for the field by designating each bit of a respec-
tive bitstring as a zero, one, or don’t care value and further
wherein a don’t care value may be enumerated as a zero and
a one for purposes of determining the possible values.

54. The non-transitory computer-readable medium of
claim 52 wherein to intersect the leaf node’s description for
the field with the rule’s description for the field on a bit-by-bit
basis the sequence of instructions further causes the processor
to apply a set of intersection rules including: a don’t-care bit
intersected with another don’t-care bit yields the don’t-care
bit, a value intersected with an equal value yields the value,
the don’t-care bit intersected with the value yields the value,
and the value intersected with an unequal value yields an
empty intersection.

55. The non-transitory computer-readable medium of
claim 43 wherein to identify duplication the processor is
further configured:

for each level of the decision tree, normalize each rule of

the one or more rules represented by child nodes having
a same parent node to a respective rule range for a
respective child node, child nodes having the same par-
ent node being siblings;

compute a hash value for each sibling from the normalized

one or more rules of the sibling and a total number of the
one or more rules represented by the sibling;

compare the computed hash values for the siblings and

identifying no node duplication based on no computed
hash values being compared equal;
validate the comparison based on a computed hash value
for a sibling being compared equal to a computed hash
value for another sibling to provide either a confirmed or
a non-confirmed result of the comparison; and

identify a duplicate node based on the confirmed result
being provided and identifying no node duplication
based on the non-confirmed result being provided.

56. The non-transitory computer-readable medium of
claim 55 wherein to modifying the decision tree structure
based on the identified duplication the processor is further
configured:

link the sibling to a same subtree linked to the identified

duplicate node based on the duplicate node being iden-
tified; and

create a new subtree and linking the sibling to the new

subtree based on no node duplication being identified.

57. The non-transitory computer-readable medium of
claim 55 wherein to validate the comparison the sequence of
instructions further causes the processor to:

perform a linear comparison between each of the normal-

ized one or more rules represented by the sibling and
normalized rules represented by another sibling having
the computed hash value; and

provide the confirmed result based on an exact match of the

performed linear comparison and providing the non-

US 9,208,438 B2

33

confirmed result based on a non-exact match of the
performed linear comparison.

58. The non-transitory computer-readable medium of
claim 55 wherein to normalize each rule of the one or more
rules represented by the sibling the sequence of instructions
further causes the processor to, for each rule, normalize each
field of the at least one field of the rule against the sibling’s
range for the field.

59. The non-transitory computer-readable medium of
claim 58 wherein the sequence of instructions further causes
the processor to normalize each field of the at least one field
of' the rule against the sibling’s range for the field based on a
field type of the field.

60. The non-transitory computer-readable medium of
claim 59 wherein if the field type is a non-mask field type, the
sequence of instructions further causes the processor to:

intersect the field with the sibling’s range for the field and

subtract a lower limit of the sibling’s range for the field
from the lower and upper limits of the intersection to
compute a normalized region, wherein the hash value
computed is based on the normalized region computed.

61. The non-transitory computer-readable medium of

claim 59 wherein if the field type is a mask field type, to

10

15

20

34

normalize the sequence of instructions further causes the
processor to intersect the sibling’s description for the field
with the rule’s description for the field on a bit-by-bit basis to
compute a normalized region, wherein the hash value com-
puted is based on the normalized region computed.

62. The non-transitory computer-readable medium of
claim 61 wherein the sibling’s description and the rule’s
description for the field are bitstrings representing the pos-
sible values for the field by designating each bit of a respec-
tive bitstring as a zero, one, or don’t care value and further
wherein a don’t care value may be enumerated as a zero and
a one for purposes of determining the possible values.

63. The non-transitory computer-readable medium of
claim 61 wherein intersecting the sibling’s description for the
field with the rule’s description for the field on a bit-by-bit
basis includes applying a set of intersection rules including: a
don’t-care bit intersected with another don’t-care bit yields
the don’t-care bit, a value intersected with an equal value
yields the value, the don’t-care bit intersected with the value
yields the value, and the value intersected with an unequal
value yields an empty intersection.

#* #* #* #* #*

